• Title/Summary/Keyword: Forging Efficiency

Search Result 54, Processing Time 0.024 seconds

Investigation on the forging process of HIP rotor for USC power plant (USC 발전용 HIP Rotor의 단조 공정 연구)

  • Kim D. K.;Kim Y. D.;Kang S. T.;Kim D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • To improve the efficiency of fossil power plant, the higher steam temperature and pressure are required. Ultra super critical(USC) system meets very well this requirement. The HIP rotor is one of the most important parts of turbine in USC system and its material is easy to crack during hot forging. In this study, the upsetting and cogging process far $12\%Cr$ ESR ingot was analyzed and it is suggested a optimum process to avoid surface crack. The results were verified by test product with 4,200 tonnage press.

  • PDF

Decision making model for introducing Medical information system based on Block chain Technologies (블록체인 기반 의료정보시스템 도입을 위한 의사결정모델)

  • Zheng, Yajun;Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.93-111
    • /
    • 2020
  • Purpose The purpose of this paper is to observe the relative priorities of importances among the modified versions of Block chain system, being based on AHP decision support model which should be also proposed in this paper. Design/methodology/approach Four versions modified from the beginning of Block chain were divided into Public& Permissionless, Private&Permissionless, Public&Permissioned and Private&Permissioned types. Five criteria for evaluating the four versions whether the version were suitable for Medical information system were introduced from five factors of Technologies Accept Model, which were Security, Availability, Variety, Reliability and Economical efficiency. We designed Decision support model based on AHP which would select the best alternative version suitable for introducing the Block chain technology into the medical information systems. We established the objective of the AHP model into finding the best choice among the four modified versions. First low layer of the model contains the five factors which consisted of Security, Availability, Variety, Reliability and Economical efficiency. Second low layer of the model contains the four modified versions which consisted Public&Permissionless, Private&Permissionless, Public&Permissioned and Private& Permissioned types. The structural questionnaire based on the AHP decision support model was designed and used to survey experts of medical areas. The collected data by the question investigation was analyzed by AHP analysis technique. Findings The importance priority of Security was highest among five factors of Technologies Accept Mode in the first layer. The importance priority of Private&Permissioned type was highest among four modified versions of Block chain technologies in second low layer. The second importance priority was Private&Permissionless type. The strong point of Private&Permissioned type is to be able to protect personal information and have faster processing speeds. The advantage of Private& Permissionless type is to be also able to protect personal information as well as from forging and altering transaction data. We recognized that it should be necessary to develop new Block chain technologies that would enable to have faster processing speeds as well as from forging and altering transaction data.

Development of E-100 Fuel Pump Lower Housing Using Cold Forging Process (E-100용 연료펌프 하부 하우징의 냉간단조 개발)

  • Lee, Byeong-Hoon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.14-20
    • /
    • 2012
  • Performance and anti-corrosion of cold forged fuel pumps and die-casting fuel pumps have been tested in this study. Ethanol with 10 ppm of acetic acid is applied for the anti-corrosion test for 250 hours. Performance test result shows that the pumping efficiency of the cold forged fuel pump is equivalent to that of the die-casting fuel pump. The cold forged lower housing has better quality against corrosiveness and finer metallic structure than the die-casting lower housing does.

Study on Cold Forward Extrusion Formality Analysis along with Tool Entrance Angle of Helical Gear for Electronic Parking Brake Using Finite Element Analysis (유한요소해석을 이용한 전자식 주차브레이크용 헬리컬 기어의 금형 도입부 각도에 따른 냉간 전방압출 성형성 분석에 관한 연구)

  • Kim, Byeong Kil;Lee, Hyun Goo;Cho, Jae Ung;Jeong, Kwang Young;Cheon, Seong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.977-982
    • /
    • 2015
  • This study uses finite element analysis to evaluate the forming load of tool entrance angle of the cold forward extrusion molding process of helical gear; this can replace the spur gear applied to the Electronic Parking Brake (EPB) system. A cold forging process is often used in the automobile industry as well as in various industrial machines due to its high efficiency. Finite element analysis is frequently used when interpreting results of the forging process. Formality was evaluated by calculating tooth profile filling rate of helical gear. Change in required forming load was investigated when the entrance angle of forward extrusion tool die was changed from $30^{\circ}$ to $60^{\circ}$, also by finite element analysis. We suggest suitable tool entrance angles.

Five-axis Machining Characteristics of Titanium Alloy Forging Shape (티타늄합금 단조 형상의 5축 가공 특성에 관한 연구)

  • Jung, Hong-Il;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-99
    • /
    • 2022
  • Owing to the excellent corrosion resistance of titanium alloys, they are widely used as materials for aircraft components. However, in terms of machining, dimensional deformation methods vary significantly, such as forging, owing to their difficult-to-cut property and the uncontrollable vibration generated during machining. A method to minimize the vibration generated during machining by applying advanced tools and controlling the sequence of machining processes, which can improve the machinability and precision of titanium alloy-forged low-angle components, is proposed herein. Using the proposed tool and based on a process order experiment, the efficiency of the machining process is verified by measuring the dimensional deformation of the low-angle component.

A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load (응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구)

  • Choi, Seung-Il;Ji, Myoung-Kuk;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.

The Development of a Web-based Realtime Monitoring System for Facility Energy Uses in Forging Processes (단조공정에서 설비 에너지 사용에 대한 웹 기반 실시간 모니터링 시스템 개발)

  • Hwang, Hyun-suk;Seo, Young-won;Kim, Tae-yeon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • Due to global warming and increased energy costs around the world, interests of energy saving and efficiency have been increased. In particular, forging factories need methods to save energy and increase productivity because of needing amounts of energy uses. To solve the problem, we propose a system, which includes collection, monitoring, and analysis process, to monitor energy uses each facility in realtime based on the IoT devices. This system insists of worksheets management, facility/energy management, realtime monitoring, history search, data analysis through connecting with existed ERP/MES Systems in manufacturing factories. The energy monitoring process is to present used energy collected from IoT devices connected with installed gasmeter and wattmeter each facility. This system provide the change of energy uses, usage fee, energy conversion, and green gas information in realtime on Web and mobile devices. This system will be enhanced with energy saving technology by analyzing constructed big data of energy uses. We can also propose a method to increase productivity by integrating this system with functions of digitalized worksheets and optimized models for production process.

A Study on the Parameters Contributing to the Void Crushing in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.127-130
    • /
    • 2007
  • Effect of the forging process parameters on the void crushing is the cogging process has been studied in order to find the most effective factor. The Process parameters used for this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis about the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

  • PDF

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Finite Element Analysis of a Screw Rolling Process (유한요소법을 이용한 나사전조 공정의 해석)

  • Jang, S.J.;Lee, M.C.;Han, S.S.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.128-131
    • /
    • 2009
  • In this paper, three-dimensional finite element analysis of screw rolling process of a long shaft bolt is conducted by using a rigid-plastic finite element method based metal forming simulator AFDEX 3D. A whole sequence of cold forming processes of a long shaft bolt composed of forging and screw rolling processes is simulated to reveal the mechanism of screw formation. A mesh density control function is applied near the major plastic deformation region to achieve computational efficiency.

  • PDF