• Title/Summary/Keyword: Forestry Engineering

Search Result 392, Processing Time 0.022 seconds

Antiatherogenic Effect of the Extract of Allium victorialis on the Experimental Atherosclerosis in the Rabbit and Transgenic Mouse (동맥경화유발 토끼와 형질전환 마우스에서 산마늘 추출물의 항동맥경화 효과)

  • Kim, Tae-Gyun;Kim, Seung-Hee;Kang, Soeg-Youn;Jung, Ki-Kyung;Choi, Don-Ha;Park, Yong-Bok;Ryu, Jong-Hoon;Han, Hyung-Mee
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.2
    • /
    • pp.149-156
    • /
    • 2000
  • Atherosclerosis is emerging as one of the major causes of death in Korea as well as Western societies. In the present study; hypocholesterolemic and antiatherogenic effects of the ethanol extract of Allium victorialis Makino was investigated using the conventional rabbit and the cholesteryl ester transfer protein (CETP)-transgenic mouse model. Hypercholesterolemia was induced by feeding high cholesterol diet to the animals for 30 days and they were then fed with high cholesterol diet containing 0.5% of the A. victorialis extract for additional 30 (or 40) days. In the experiment using rabbits, treatment with the A. victorialis extract significantly decreased plasma total cholesterol, low density lipoprotein (LDL)-cholesterol, triglyceride levels and lipid peroxidation compared to those in the control group. Total cholesterol contents in the liver and the heart were also significantly decreased. Lipid staining of the aorta isolated from the rabbits showed that treatment with the A. victorialis extract decreased formation of atheromatous plaques on the intima of the aorta. In the experiment employing CETP transgenic mouse model, treatment with the A. victorialis extract decreased the levels of plasma total cholesterol and the tissue triglyceride levels in the heart. These results demonstrated that the ethanol extract of A. victorialis lowered serum cholesterol levels, tissue lipid contents and accumulation of cholesterol in the artery.

  • PDF

Visualization of Artificially Deposited Submicron-sized Aerosol Particles on the Surfaces of Leaves and Needles in Trees

  • Yamane, Kenichi;Nakaba, Satoshi;Yamaguchi, Masahiro;Kuroda, Katsushi;Sano, Yuzou;Lenggoro, I. Wuled;Izuta, Takeshi;Funada, Ryo
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.275-280
    • /
    • 2012
  • To understand the effect of aerosols on the growth and physiological conditions of trees in forests, it is important to know the state of aerosols that are deposited on the surface of the leaves or needles. In this study, we developed methods of visualization of submicron-sized aerosols that were artificially deposited from the gas-phase or liquid phase onto tree leaves or needles in trees. Firstly, we used field-emission scanning electron microscopy (FE-SEM) to observe black carbon (BC) particles that were artificially sprayed onto the leaves or needles. The distribution of BC particles deposited on the leaves and needles were distinguished based on the size and morphological features of the particles. The distribution and agglomerates size of BC particles differed between two spraying methods of BC particles employed. Secondly, we tried to visualize gold (Au) particles that were artificially sprayed onto the leaves using energy dispersive X-ray spectrometry (EDX) coupled to FE-SEM. We detected the Au particles based on the characteristic X-ray spectrum, which was secondarily generated from the Au particles. In contrast to the case of BC particles, the Au particles did not form agglomerates and were uniformly distributed on the leaf surfaces. The present results show that our methods provide useful information of adsorption and/or behavior of fine particles at the submicron level on the surface of the leaves.

A Comparative Assessment of the Efficacy of Frequency Ratio, Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy in Landslide Susceptibility Mapping

  • Park, Soyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.

Somatic Embryogenesis from Various Parts of Muscari comosum var. plumosum

  • Xudong He;Ko Jeong-Ae;Choi Jeong-Ran;Kim Hyung-Moo;Kim Myung-Jun;Choi So-Ra;Kim Young-Gon;Kim Dong-Hee;Kim Hyun-Soon
    • Korean Journal of Plant Resources
    • /
    • v.19 no.3
    • /
    • pp.427-431
    • /
    • 2006
  • In vitro high-frequency plant regeneration of Muscari comosum var. plumosum through somatic embryogenesis was obtained via two developmental pathways: direct embryos and multiple shoots regenerated from embryogenic callus. Flower bud with pedicel, receptacle, petal and ovary wall, floral stalk and leaf as explants were cultured in MS medium supplemented with various plant growth regulators. Embryos formed directly from pedicel, receptacle and floral stalk. Depending on explant sources, the optimal medium was MS medium supplemented with 0.2 mg/L IBA and 0.3 mg/L BA, 3.0 mg/L IBA and 3.0 mg/L BA, and MS-free medium for pedicel, receptacle, and floral stalk, respectively. Multiple shoots regenerated from embryogenic cal]i which was initiated from petal, ovary and leaf were observed in MS medium with different concentrations and combinations of hormone. The most suitable medium for each type of explant was 3.0 mg/L IBA and 3.0 mg/L BA(petal and ovary) and 5.0 mg/L IBA and 5.0 mg/L BA (leaf) Furthermore, the combination of 0.1 mg/L 2,4-D and 1.0 mg/L BA was also good for all sources of explants not only for direct embryo formation, but also, for embryogenic callus induction.

Comparison of Compressive Forces on Low Back(L5/S1) for One-hand Lifting and Two-hands Lifting Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.597-603
    • /
    • 2011
  • Objective: The objective of this study was to compare one-hand and two-hands lifting activity in terms of biomechanical stress for the range of lifting heights from 10cm above floor level to knuckle height. Background: Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lifting tasks using both a one-handed as well as a two-handed lifting technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lifting tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lifting tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 43%, as the workload was increased twice from 7.5kg to 15.0kg. For the right-hand lifting task, these were increased by the average 34%. For the two-hands lifting tasks, these were increased by the average 25%. The lateral shear forces at L5/S1 of one-hand lifting tasks, notwithstanding the half of the workload of two-hands lifting tasks, were very high in the 300~317% of the one of two-hands lifting tasks. The moments at L5/S1 of one-hand lifting tasks were 126~166% of the one of two-hands lifting tasks. Conclusion: It is concluded that the effect of workload for one-hand lifting is greater than two-hands lifting. It can also be concluded that asymmetrical effect of one-hand lifting is much greater than workload effect. Application: The results of this study can be used to provide guidelines of recommended safe weights for tasks involved in one-hand lifting activity.

Significance and Future Direction for Designation and Management of Landslide-Prone Zones (산사태 취약지역 지정·관리 제도의 의의와 향후 과제)

  • Kim, Suk Woo;Chun, Kun Woo;Kim, Kyoung Nam;Kim, Min Sik;Kim, Min Seok;Lee, Sang Ho;Seo, Jung Il
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2013
  • The legal basis for the systematic prevention and response to landslide hazards, and the rehabilitation of landslide-hit areas, was established through the amendment of the Forest Protection Act in August 2012. The most noticeable amendment to the Act is the inclusion of clauses associated with the designation and management of landslide-prone zones (including debris flow-prone zones). In this paper, we (1) introduce the clauses related to the designation and management of landslide-prone zones that were included in the amended Forest Protection Act, (2) examine their significance by reviewing the present status of related domestic laws and structural countermeasures such as sediment check dams for sediment-related disaster prevention, and (3) suggest the future directions of the procedure for the designation and cancellation of such zones, and their maintenance and institutional aspects. The establishment of an institutional device for the designation and management of landslide-prone zones has great significance in the aspect of (1) the establishment of a comprehensive management and prevention system for potential landslide-prone zones in forested areas where the hazard risk has been poorly recognized as compared with the flood risks in lowlands, and (2) the establishment of the basis for overcoming the limits of structural countermeasures according to limited budgets. To develop the designation and management system for landslide-prone zones, not only must present problems be addressed, but a cooperation system between the administration and local residents must also be established.

Comparison of Muscle Strength for One-hand and Two-hands Lifting Activity (한 손 들기 작업과 양 손 들기 작업의 근력 능력 비교 연구)

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2007
  • Work-related musculoskeletal disorders (WMSDs) are a major problem in industries in which manual materials handling is performed by workers. To prevent these WMSDs, it is necessary to understand the muscular strength capability and use this knowledge to design job and selection and assignment of workers. Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. However, a few researches have been done for one-hand lifting activity of manual materials handling tasks. The objective of this study is to compare one-hand and two-hands lifting strength in terms of static and dynamic strength of the lifting activity for the ranging from the height of knuckle to elbow. It is shown in this study that the isometric lifting strength of one-hand is ranging from 54.7 to 63.3% of the one of two-hands. However, it is found that there is no significant difference between a person's isometric lifting strength for left-hand and right-hand. It is also shown that there is no significant difference between the peak force under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Similar results were obtained for the peak acceleration and peak velocity under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Isometric lifting strength at the height of knuckle was ranging from 2 to 3 times of the dynamic peak force during sub-maximal lifting. It is concluded that the dynamic peak forces under the sub-maximal loading are not highly correlated with the isometric lifting strength in similar postures.

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand and Two-hands Lowering Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.413-420
    • /
    • 2013
  • Objective: The objective of this study was to compare one-hand and two-hands lowering activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level. Background: Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lowering tasks using both a one-handed as well as a two-handed lowering technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lowering tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lowering tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 6%, as the workload was increased twice from 7.5kg to 15kg. For the right-hand lowering task, these were increased by the average 17%. For the two-hands lowering tasks, these were increased by the average 14%. Conclusion: Even though the effect of workload on the biomechanical stress for both one-hand and two-hands lowering tasks is not so significant for the workload less than 15kg, it can be claimed that the biomechanical stress for one-hand lowering is greater than for two-hands lowering tasks. Therefore, it can be concluded that asymmetrical lowering posture would give greater influence on the biomechanical stress than the workload effect for one-hand lowering activity. Application: The result of this study may be used to provide guidelines of recommended safe weights for tasks involved in one-hand lowering activity.

Development of LPWA-Based Farming Environment Data Collection System and Big Data Analysis System (LPWA기반의 임산물 생육환경 수집 및 빅데이터 분석 시스템 개발)

  • Kim, Yu-Bin;Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.695-702
    • /
    • 2020
  • Recently, as research on smart farms has been actively conducted, indoor environment control, such as a green house, has reached a high level. However, In the field of forestry where cultivation is carried out in outdoor, the use of ICT is still insufficient. In this paper, we propose LPWA-based forest growth environment collection and big data analysis system using ICT technology. The proposed system collects and transmits the field cultivation environment data to the server using small solar power generation and LPWA technology based on the oneM2M architecture. The transmitted data is constructed as big data on the server and utilizes it to predict the production and quality of forest products. The proposed system is expected to contribute to the production of low-cost, high-quality crops through the fusion of renewable energy and smart farms. In addition, it can be applied to other industrial fields that utilize the oneM2M architecture and monitoring the growth environment of agricultural crops in the field.

Enhancement of Scenedesmus sp. LX1 Biomass Production and Lipid Accumulation Using Iron in Artificial Wastewater and Domestic Secondary Effluent

  • Zhao, Wen-Yu;Yu, Jun-Yi;Wu, Yin-Hu;Hong, Yu;Hu, Hong-Ying
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • While coupling wastewater treatment with microalgal bioenergy production is very promising, new approaches are needed to enhance microalgal growth and lipid accumulation in wastewater. Therefore, this study investigated the effect of iron on the growth, nutrient removal, and lipid accumulation of Scenedesmus sp. LX1 in both artificial wastewater and domestic secondary effluents. When increasing the iron concentration from 0 to 2 mg/l in the artificial wastewater, the biomass production of Scenedesmus sp. LX1 increased from 0.17 to 0.54 g/l; the nitrogen and phosphorus removal efficiency increased from 15.7% and 80.6% to 97.0% and 99.2%, respectively; and the lipid content was enhanced 84.2%. The relationship between the carrying capacity/maximal population growth rate of Scenedesmus sp. LX1 and the initial iron concentration were also in accordance with the Monod model. Furthermore, when increasing the iron concentration to 2 mg/l in four different domestic secondary effluent samples, the lipid content and lipid production of Scenedesmus sp. LX1 was improved by 17.4-33.7% and 21.5-41.8%, respectively.