• Title/Summary/Keyword: Forest-fire

Search Result 857, Processing Time 0.031 seconds

Fire-Induced Forest Disturbance Mapping by Using QuickBird Imagery (QuickBird 화상을 이용한 산불 삼림교란도 작성)

  • Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This paper presents the capability to use QuickBird imagery for effects of forest disturbance in Okgye burned area. Particular attention of this paper deals with the NBR-derived mapping burn severity on QuickBird imagery to locate reliable rehabilitation(namely, secondary succession) over postfire surface. Comparisons of the mapping forest disturbance derived from QuickBird NBR data and the mapping burn severity derived from Landsat ${\Delta}NBR$ data show substantial agreement (KHAT value =0.7886). The method calculated from the correlation between QuickBird wetness and Landsat ETM+ band7 may have application to forest harvest disturbance.

A Study on fire investigation & calorie analysis of main trees in Go-sung wildfire land (고성산불지역에서의 화재조사와 주요수목의 열량분석에 관한 연구)

  • 김동현;고재선;최세환;김광일
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.31-36
    • /
    • 1999
  • This paper contained an actual investigation of a wildfire which broke out on 23 April R 1996 in Go-sung Kun, Kang-won Do examined the calories and the total calories of the m main trees which were Quercus variabillis and Pinus densiflora. There were three important f fire spread factors which were weather condition, fuel condition and terrain. The weather c condition was the most dangerous alarm level. The fuel condition having a high calory v value, Pinus densiflora made up 63% of the forest. Terrain of the forest were mostly c covered by steep slopes and complicated line construction. This experimental calorie study a about Pinus densiflora and Quercus variabillis showed that Pinus densiflora had 13,34kcal/g a and Quercus variabillis had 9.64kcal/g. In the case of weight loss of pyrolysis, Pinus densiflora had a higher percentage rated 35.71~10.05% than Quercus variabillis. Accordingly, Pinus densiflora showed lower than Quercus variabillis in heat resistance.

  • PDF

Combustional Characteristics of Living Leaves for Five Shrubs in Youngdong Areas (영동지역 관목류 5가지 수종 생엽의 연소특성)

  • Lee, Hae-Pyeong;Lee, Si-Young;Park, Young-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • In this study, we have investigated the combustibility of five shrubs growing in Youngdong area such as Lindera obtusiloba, Lespedeza maximowiczii, Zanthoxylum piperitum, Zanthoxylum schinifolium, and Corylus heterophylla var. thunbergii using the ignition temperature tester, the cone calorimeter and the smoke density chamber in order to estimate the danger of a forest fire. The results showed that Lespedeza maximowiczii has the lowest ignition temperature, the fastest ignition time and the highest average release concentrations of CO and $CO_2$. Zanthoxylum piperitum and Zanthoxylum schinifolium showed the highest level in heat release and smoke release, respectively. Therefore, we have concluded that Lespedeza maximowiczii has the highest ignitibility, Zanthoxylum piperitum the most intensive fire spread and fire intensity, and Zanthoxylum schinifolium and Lespedeza maximowiczii most difficult to escape from a forest fire.

Recognition of Fire Levels based on Fuzzy Inference System using by FCM (Fuzzy Clustering 기반의 화재 상황 인식 모델)

  • Song, Jae-Won;An, Tae-Ki;Kim, Moon-Hyun;Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • Fire monitoring system detects a fire based on the values of various sensors, such as smoke, CO, temperature, or change of temperature. It detects a fire by comparing sensed values with predefined threshold values for each sensor. However, to prevent a fire it is required to predict a situation which has a possibility of fire occurrence. In this work, we propose a fire recognition system using a fuzzy inference method. The rule base is constructed as a combination of fuzzy variables derived from various sensed values. In addition, in order to solve generalization and formalization problems of rule base construction from expert knowledge, we analyze features of fire patterns. The constructed rule base results in an improvement of the recognition accuracy. A fire possibility is predicted as one of 3 levels(normal, caution, danger). The training data of each level is converted to fuzzy rules by FCM(fuzzy C-means clustering) and those rules are used in the inference engine. The performance of the proposed approach is evaluated by using forest fire data from the UCI repository.

An analysis of year-to-year change of degraded forest land in Mongolia nature reserve Mt. Bogdkhan in Ulaanbaatar (몽골 울란바토르 복드한산 자연보호지역의 산림훼손지 경년변화 분석)

  • Ganzorig, Myagmar;Lee, Joon-Woo;Kweon, Hyeong-Keun;Choi, Sung-Min;Lee, Myeong-Kyo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Focused on Mt. Bogdkhan nature reserve in Mongolia, this study was conducted as a fundamental research to discover a tendency and characteristics of forest damage and to draw up measures for proper plans of forest restoration through an analysis of year-to year change using satellite images. In specific, land cover mapping was conducted by using Landsat images from 1994 to 2011, and then year-to year change was analyzed to investigate the features of forest damage in Mt. Bogdkhan. The results showed that the whole area of a reservation in Mongolia in 2011 was about $416.89km^2$; among them, forest area was $167,87km^2$, accounting for about 40.3%, followed by bare patch and grassland area (58.6%) and urban dry area (1.1%). In particular, compared in 1994, the area of forest in 2011 has increased by $6.12km^2$; while bare patch and grassland area has decreased by $10.81km^2$. Primary causes of forest degradation occurred in Mt. Bogdkhan nature reserve included illegal logging for fuel, forest and grassland degradation caused by domestic animals grazing, man-made forest fire, and disaster caused by insect pest.

Database Design for Management of Forest Resources using a Drone (드론을 이용한 산림자원 정보관리를 위한 DB 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.251-256
    • /
    • 2019
  • With the fast development of modern society, the interests concerned about the significance of nature and environment become major issue nowadays. Especially, threats for our health due to severe environmental pollution and fine dusts become serious problem with the fast industrialization of our society, and extra attention is focused on interests about conservation of nature and management of forest resources. Precious forest resources, however, are not properly managed and destroyed vainly due to frequent fire, damage by storms and floods, and unplanned land development. So systematic and scientific construction and management of forest resources are required in order to solve these problems efficiently. Furthermore, implementation of the forest resource information database that contains information of trees, Topography, ecosystem of the forest is urgently needed. In this paper, we design and implement the forest resource information database based on the information of location based forest resources and Topography using forest images taken by a drone, that enables us to manage forest resources efficiently, make decision for logging, and construct a future tree-planting project easily.

Mechanical Deterioration of Overhead Transmission Lines by Forest Fires (산불에 의한 가공 송전선로의 기계적 열화 특성)

  • 김영달;김성덕;심재명;정동화;강지원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.26-34
    • /
    • 2000
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines have become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires.This paper deals with investigation of strength deterioration performance of ASCR due to fires through several testing and analyzing data for tension load and extension of blazed ACSR. Test samples are ACSR 480[$\textrm{mm}^2$] conductors, which are artificially fired to regular durations. Mechanical properties such as tension load and extension for fired ACSR conductors are tested and estimation functions for mechanical performances corresponding to fire duration are determined. As a result, it can be verified that both tension load and extension of ACSR are reduced by increasing fire duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

A Study on Analysis of Greenhouse Gas Emissions from Forest Fires Depending on Region and Altitude (지역 및 고도별 산불로부터 온실가스 배출량 분석 연구)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • In this study we analyzed carbon emissions of leaves of a Pinus densiflora which is vulnerable to a forest fire using the cone calorimeter in order to analyze greenhouse gas emissions from forest fires depending on region and altitude. Fuels were collected from 9 regions[Hongcheon(Gangwon-do), Chungsong(Gyeongbuk-do), Yanhpyeong (Gyeonggi-do), Jecheon(Chungchongbuk-do), Gongju(Chungcheongnam-do), Wuju(Jeollabuk-do), Youngam(Jeollanam-do), Busan and Jeju-do)] and 9 altitudes(80 m, 450 m, 900 m, 1000 m, 1100 m, 1200 m, 1300 m, 1400 m and 1500 m) and then, carbon dioxide and carbon monoxide emissions contained in a weight of 50 g of fuel were analyzed. According to the results, there were differences in carbon emissions by regional groups, as the average carbon dioxide and carbon monoxide emissions in 9 regions were nearly 43.5929 g to 52.8868 g, and 0.8842 g to 3.6422 g, respectively. Busan and Jecheon had relatively higher carbon dioxide emissions and especially, Busan had 1.23 times higher carbon dioxide emissions than Jeju-do. Also, Gongju, Chungcheongnamo Province and Busan had relatively higher carbon monoxide emissions and especially, Gongju and Pusan had relatively higher carbon monoxide emissions and especially, Gongju had 4.12 higher carbon monoxide emissions than Hongcheon. In addition, there were differences in carbon emissions too depending on altitude, since carbon dioxide and carbon monoxide emissions in 9 altitudes were respectively, 40.7015 g to 68.9297 g and 1.3923 g to 12.2918 g. At the altitude of 80m, carbon dioxide and carbon monoxide emissions were respectively, 68.9297 g and 12.2918 g, and at the altitude of 450m, carbon dioxide and carbon monoxide emissions were respectively, 65.5115 g and 11.2497 g. These results show that pine trees at the lower altitude discharge relatively more carbon. It is considered that this analysis on carbon emissions depending on region and altitude can be effectively used for predicting greenhouse gas emissions and establishing statistical data from forest fires in each region and altitude.

Extraction of Individual Trees and Tree Heights for Pinus rigida Forests Using UAV Images (드론 영상을 이용한 리기다소나무림의 개체목 및 수고 추출)

  • Song, Chan;Kim, Sung Yong;Lee, Sun Joo;Jang, Yong Hwan;Lee, Young Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1731-1738
    • /
    • 2021
  • The objective of this study was to extract individual trees and tree heights using UAV drone images. The study site was Gongju national university experiment forest, located in Yesan-gun, Chungcheongnam-do. The thinning intensity study sites consisted of 40% thinning, 20% thinning, 10% thinning and control. The image was filmed by using the "Mavic Pro 2" model of DJI company, and the altitude of the photo shoot was set at 80% of the overlay between 180m pictures. In order to prevent image distortion, a ground reference point was installed and the end lap and side lap were set to 80%. Tree heights were extracted using Digital Surface Model (DSM) and Digital Terrain Model (DTM), and individual trees were split and extracted using object-based analysis. As a result of individual tree extraction, thinning 40% stands showed the highest extraction rate of 109.1%, while thinning 20% showed 87.1%, thinning 10% showed 63.5%, and control sites showed 56.0% of accuracy. As a result of tree height extraction, thinning 40% showed 1.43m error compared with field survey data, while thinning 20% showed 1.73 m, thinning 10% showed 1.88 m, and control sites showed the largest error of 2.22 m.

Crown Fuel Characteristics of Japanese Red Pine (Pinus densiflora) in Mt. Palgong, Daegu (대구 팔공산 지역의 소나무 수관층 연료 특성)

  • Koo, Kyo-Sang;Lee, Byung-Doo;Won, Myoung-Soo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.52-56
    • /
    • 2010
  • Crown fuel characteristics such as crown bulk density, crown base height, and fuel moisture content of Japanese red pine were analyzed. Ten trees in Mt. Palgong at Daegu, were destructively sampled and their crown fuels were weighed separately for each fuel category. Fuel content of live and dead crown component were 53%, and 15.3%, respectively. Foliar moisture content was 56%. Needles and twigs with diameter less than 1cm diameter accounted for 16.2%, 55% of total and crown fuel load. Average crown bulk density of Japanese red pine was 0.24 kg/$m^3$, effective crown fuel bulk density was 0.1325 kg/$m^3$.