잣나무와 낙엽송 조림목 수간 내에서 단열방사조직과 방추형방사조직의 연륜 내 및 축방향의 변이성을 조사하였다. 잣나무와 낙엽송의 단열방사조직의 높이는 각기 평균 6.3 및 9.1 세포고로서 낙엽송이 더 높았다. $0.25mm^2$ 면적당 단열방사조직의 개수는 각각 평균 6.5개 및 7.5개로써 낙엽송이 더 많았으며 방추형방사조직의 높이는 양 수종 모두 평균 20세포고 정도로서 거의 차이가 없었다. 연륜 내에서 조재부에서 만재부로 이행해 감에 따라 단열방사조직과 방추형방사조직의 높이는 감소하였으나 개수에는 거의 변화가 없었다. 축방향으로 단열방사조직의 세포고는 지상고가 증가함에 따라 점차 증가하였다. 단열방사조직의 개수는 잣나무에서 지상고 5.2m까지 거의 일정하였고 그 이상의 지상고부터 증가하였으나 낙엽송에서는 일관된 경향을 찾아보기 어려웠다. 방추형방사조직의 높이는 지상고가 낮은 수간의 기부에서 가장 낮았으며 수간의 중앙부로 올라감에 따라 높아 지다가 수관부에서 다시 낮아지는 경향이 있었다. 본 연구 결과, 연륜 내에서의 방사조직의 변이성은 비교적 뚜렷하였으나 축방향에서의 변이성은 일관된 경향이 없어 그 경향을 명확히 밝히는 것은 어려울 것으로 생각되었다.
지구상에서 가장 중요한 자원 중 하나인 토양은 지형조건에 따라 서로 다른 다양한 형태를 가지고 있기 때문에 최적화되고 지속 가능한 토양 자원의 활용을 위해서는 정확하고 포괄적인 정보가 필요하게 된다. 그러나 연구대상지역인 인도 Tamil Nadu지역의 경우 지형적인 영향으로 토양에 대한 정보가 많이 누락되어 있었다. 따라서 본 연구에서는Tamil Nadu 지역 Eastern Ghat의 Kolli Hill에 대한 지형 측량과 원격탐측을 통한 토양조사와 지도제작이 이루어졌으며 토양 샘플의 물리화학적 특성은 미국 농무부 (USDA) 기준에 따라 분석이 이루어졌다. 연구 결과로 토양을 5개의 대분류와 10개의 부분류로 구분할 수 있었으며 토양의 분포 특성을 보면 Entisol, Inseptisol 그리고 Alfisol의 세 계층 중 Entisol의 경우 전체 지역에 대하여 75%의 분포를 보였으며 5개의 대분류에 대해 Ustorthent 가 73% 로서 대부분 지역에 나타나고 있다. 또한 Lithic Ustorthents(40%), Typic Ustorthents(26%)의 분포를 나타내었다. 앞으로도 대상지역에 대한 토양자원에 대한 지속적인 연구가 요구되며 이를 통하여 토양에 대한 많은 정보를 활용할 수 있을 것이다.
본 연구의 목적은 드론 기반 스마트 방역 연구로서 드론을 방재 분야에 활용을 통한 대응방안과 기대효과를 연구하는 것이다. 현행 방재업무의 문제점에 대한 검토와 이에 따른 대응안을 환경적, 시장적, 기술적 접근으로 살펴보면 다음과 같다. 첫째로 환경적 측면에서 드론 기반 관제를 활용한 방재업무의 활용 효과는 산림, 조류인플루엔자, 가축, 시설지역, 모기 유충, 해충 등 광범위한 활용과 AI 및 콜레라 등 각종 방역업무 단순화 및 효과적 방역체계 제공 할 수 있다. 둘째, 시장적 측면에서 방역방법의 신기술 도입을 통한 국내 표준화 드론을 활용한 소독방역 임무 활용에 따른 축산·가축 방역 관련 법령, 행정규칙의 기준마련, 관련 산업의 동반성장과 신시장 발굴, 가축 질병 방역에 투입되는 연간 예산 절감의 효과를 가져온다. 셋째, 기술적 측면은 (1) 새로운 가축 질병 방역형태인 다중드론 활용 소독 방역의 현장적용, (2) 드론 산업 소프트웨어 분야의 혁신, (3) 다양한 시장에 적용 가능한 드론 관제/제어 통합시스템으로 산업 다변화, (4) 빅데이터 드론 이동로 3차원 공간정보 분석 정밀 드론 교통정보제공으로 안전성 높은 비행 보장, (5) 다수의 드론 동시 자동 임무 비행이 가능하여 저비용 고효율 시스템 보급 실현, (6) 고도의 정밀 비행기술 불필요에 따른 분야별 드론 이용자 증가로 고찰되었다. 본 연구는 문헌 조사와 전문가의 의견을 기반으로 작성되어 향후 연구 분야는 드론 기반 서비스에 대한 실증적 자료를 기반으로 그 효과에 대해 입증하는 작업이 필요하다. 본 연구의 기대효과는 드론을 방재업무에 적극적 활용 지원 또는 이와 관련된 정책을 수립하는데 이바지 한다.
원격탐사는 관찰하고자 하는 지역을 직접 방문하지 않고, 영상만으로도 적은 비용으로 짧은 시간 안에 대상지역을 연구하는데 있어 효율적인 기술이다. 본 연구에서는 가장 최근에 발사된 Landsat-8 OLI(Operational Land Imager) 영상을 이용하여 하천유역의 토지피복분류 정확도를 개선하는 방법을 제안하였다. 제안된 방법 중 첫 번째로 Landsat-8 OLI 영상을 이용하여 정규식생지수인 NDVI(Normalized Difference Vegetation Index)와 정규수분지수 NDWI(Normalized Difference Water Index)를 생성하였다. 두 번째로 원래의 영상에 생성된 NDVI와 NDWI 2개의 밴드를 Layer-Stacking하여 새로운 영상을 만들었다. 마지막으로 기존의 영상과 밴드조합을 적용한 새로운 영상에 각각 MLC(Maximum Likelihood Classification), SVM(Support Vector Machine)의 감독분류를 적용하였다. 하천피복분류를 할 때 정확도를 개선하는데 있어 그 의미가 있으며, 분류결과 MLC 분류방법을 적용하였을 때 약 8% 이상, SVM 분류방법을 적용하였을 때 약 1.6% 정도 개선되었다. 향후 다양한 영상과 밴드조합을 통한 연구가 이루어진다면 보다 나은 의사결정에 도움이 될 것으로 사료된다.
본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.
본 연구는 수원시 호매실 택지개발지구를 대상으로 토지피복지도와 도시기후 유형 분류 방법인 Local Climate Zone (LCZ)을 활용하여 기후적 특성에 따라 도시지역을 세분화하고, 각각의 지역에 대한 여름철 폭염 시 열환경 특성을 확인하고자 하루 중 가장 더운 낮 시간의 열쾌적성을 측정했다. 측정 결과 산림과 논은 중간 열스트레스 값을, 도시공원은 강한 열스트레스 값을 나타냈으며, 기타 시가화 지역은 극한 열스트레스 값을 나타냈다. 이러한 결과는 도시지역의 유형별 기후적 특성과 차이를 확인하고, 도시계획 수립 시 계획단계에서부터 폭염을 대비한 토지이용의 구상 및 그린인프라의 효율적인 배치를 통해 열환경 개선을 위한 정책적 활용 가능성이 있음을 보여주었다.
최근 빅데이터 과학은 사회현상 모델링을 통한 예측은 물론 강화학습과 결합하여 산업분야 자동제어까지 응용범위가 확대되고 있다. 이러한 추세 가운데 이미지 영상 데이터 활용연구는 화학, 제조, 농업, 바이오산업 등 다양한 산업분야에서 활발히 진행되고 있다. 본 논문은 신경망 기술을 활용하여 영상 데이터의 시맨틱 분할 성능을 개선하고자, U-Net의 계산효율성을 개선한 DeepU-Net 신경망에 AutoML 강화학습 알고리즘을 구현한 NASNet을 결합하였다. BRATS2015 MRI 데이터을 활용해 성능 검증을 수행하였다. 학습을 수행한 결과 DeepU-Net은 U-Net 신경망 구조보다 계산속도 향상 뿐 아니라 예측 정확도도 동등 이상의 성능이 있음을 확인하였다. 또한 이미지 시맨틱 분할 성능을 개선하기 위해서는 일반적으로 적용하는 드롭아웃 층을 빼고, DeepU-Net에 강화학습을 통해 구한 커널과 필터 수를 신경망의 하이퍼 파라미터로 선정했을 때 DeepU-Net보다 학습정확도는 0.5%, 검증정확도는 0.3% 시맨틱 분할 성능을 개선할 수 있었다. 향후 본 논문에서 시도한 자동화된 신경망을 활용해 MRI 뇌 영상진단은 물론, 열화상 카메라를 통한 이상진단, 비파괴 검사 진단, 화학물질 누출감시, CCTV를 통한 산불감시 등 다양한 분야에 응용될 수 있을 것으로 판단된다.
본 연구에서는 GDAPS(Global Data Assimilation and Prediction System) 예보모델자료와 위성기반 식생건조지수를 결합시킨 산불위험지수 WRI(Wildfire Risk Index)를 개발하였고, 이를 2019년 4월 4일의 고성-속초 산불과 강릉-동해 산불 사례에 적용해 보았다. 제시한 산불위험지수 WRI는 강수 이벤트 후에 건조 경향이 지속되었던 3월 19일 전후와 4월 4일 전후의 산불위험도 변화를 잘 나타냄으로써, 그 적합성이 확인되었다. WRI는 우리나라 산불취약성의 상시 감시를 위한 하나의 방법이 될 수 있을 것이며, 이를 더욱 발전시키기 위해서는 향후 GK-2A 위성자료의 활용과 함께, 산림청의 산불위험예보시스템과의 연계 방안에 대한 모색이 반드시 필요할 것이다.
최근 농업, 산림관리, 해안환경 모니터링 등 다양한 분야에서 다분광 카메라의 활용, 특히 드론에 탑재되어 활용되는 사례가 증대되고 있다. 산출되는 다분광 영상은 위치정보를 위해 주로 드론에 탑재된 GPS (Global Positioning System)나 IMU (Inertial Measurement Unit) 센서를 이용해 지리참조(georeferencing)되는데, 보다 높은 정확도를 위해서는 직접 측량한 지상 기준점을 이용하기도 한다. 하지만, 직접 측량에 드는 비용 및 시간으로 인해 또는 직접 접근이 어려운 지역에 대해서는 지상 참조값을 활용하지 않고 지리참조를 수행해야하는 경우가 자주 발생하게 된다. 본 연구는 지상기준점이 가용하지 않은 경우에 다분광카메라로부터의 영상의 지리참조 정밀도를 향상시키기 위해 같이 탑재된 고해상도 RGB카메라의 영상을 활용하는 방안에 대하여 연구한다. 드론 영상은 우선 번들조정을 통해 카메라의 외부표정 요소를 추정하였고, 이를 지상 기준점을 이용한 경우의 외부표정 및 위치결과와 비교하였다. 실험결과, 고해상도 영상을 포함하여 번들조정을 하게 될 경우, 다분광 카메라 영상을 단독으로 활용할 때보다, 다분광 카메라 영상의 지리참조 오차가 비약적으로 감소하였음을 확인하였다. 추가로 한 지상 지점에서 드론으로의 방향각을 추정할 때의 오차를 분석한 결과, 마찬가지로 고해상도 RGB영상을 포함하여 번들조정하게 되면 기존의 방향각 오차가 한 단위이상 감소하는 것으로 나타났다.
현대 사회는 갈수록 대형화되는 자연재해와 잦은 재난사고에 의한 인적·사회적 피해가 해마다 증가하고 있다. 난접근 지역이거나 접근 불능의 위험한 재난 현장을 인공위성이나 드론, 조사로봇과 같은 첨단 조사장비를 활용하여 신속하게 접근하고 유의미한 재난 정보를 적시적으로 수집·분석함으로써, 사전 예방·대비 대책 마련뿐만 아니라 적절한 재난 현장 대응 및 중장기적 복구 계획 수립 등 재난관리 전주기에 걸쳐 국민의 재산과 생명을 지킬 수 있는 중차대한 역할을 수행할 수 있다. 본 특별호에서는 지구 원격 관측 수단인 인공위성 기술뿐만 아니라 근거리 재난현장 관측센서가 탑재된 이동형 조사차량, 드론, 조사로봇 등 다양한 조사 플랫폼을 활용한 연구원의 재난관리 현업화 기술을 소개하고 있다. 주요 연구 성과로 구글어스 엔진을 활용한 수재해 피해 탐지와 중·장기적 시계열 관측, Sentinel-1 Synthetic Aperture Radar (SAR) 영상과 인공지능을 활용한 저수지 수체 탐지, 산불 재난시 주민 이동 패턴 분석과 재난안전 연구 데이터의 효율적인 통합 관리와 활용방안 연구성과를 소개하였다. 아울러, 접근 불능의 위험한 재난현장 조사시 드론, 조사로봇을 활용한 재난원인 과학조사 연구성과를 기술하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.