• 제목/요약/키워드: Forest fires

검색결과 247건 처리시간 0.041초

산불에 노출된 가공송전선의 기계적 및 전기적 특성 거동 (Mechanical and Electrical Properties of Overhead Conductor due to Forest Fire)

  • 김병걸;장용호;김상수;한세원
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.1042-1048
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Especially, this paper describes the changes of mechanical and electrical properties of flame exposed conductor. Overhead conductors temperature were almostly 55$\sim$65% of ambient temperature. Tensile Strength decreased according to incerase of Forest Fire temperature. The detailed will be given in the text.

154kV 송전용 폴리머 애자의 산불에 대한 누설전류 및 온도 특성 (A Characteristics of Leakage Current and Temperature on Forest Fire of EHV Polymer Insulator for 154KV T/L)

  • 최인혁;최장현;박준호;이동일;김태영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.517-518
    • /
    • 2006
  • In this paper, to understand the effect of forest fires on polymer insulators for transmission lines, it was observed the aging of the housing surface of the polymer insulators. And, this paper shows the way how to create the artificial field testing in order to simulate forest fire. As the results of, maximum leakage current peaks by influence of flame increased from 1[mA] to 1.4[mA], and SEM results show the inorganic component on the housing surface because the organic component matters disappeared. Therefore, the case of exposed by forest fire, polymer insulator can be used in the early stage, but an exchange needs active countermeasure to be stabilize power delivery.

  • PDF

CPS환경에서 산불 정찰을 위한 무인기 비행경로 생성 도구 (UAV Path Creation Tool for Wildfire Reconnaissance in CPS Environment)

  • 정지원;배창희;최으뜸;이성진
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.327-333
    • /
    • 2023
  • Existing studies on the UAV (Unmanned Aerial Vehicle)-based CPS (Cyber Physical System) environment lack forest fire monitoring and forest fire reconnaissance using real-world UAVs. So, it is necessary to monitor forest fires early through CPS based on real-world UAVs with high reliability and resource management efficiency. In this paper presents an MFG (Misstion File Generater) that automatically generates a flight path of an UAV for forest fire monitoring in a CPS environment. MFG generates flight paths based on a hiking trail with a high fire probability due to a true story of an entrant. We have confirmed that the flight path generated by MFG can be applied to the UAV. Also, we have verified that the UAV flies according to the flight path generated by MFG in simulation, with a negligible error rate.

봄철과 가을철의 기상에 의한 전국 통합 산불발생확률 모형 개발 (Development of the National Integrated Daily Weather Index (DWI) Model to Calculate Forest Fire Danger Rating in the Spring and Fall)

  • 원명수;장근창;윤석희
    • 한국농림기상학회지
    • /
    • 제20권4호
    • /
    • pp.348-356
    • /
    • 2018
  • 본 연구는 현 국가산불위험예보시스템에서 실시간으로 분석되는 기상에 의한 산불발생확률 모형의 문제점을 개선하기 위하여 수행하였다. 기존 시스템의 문제점은 제주도를 포함한 9개의 도별 산불발생확률모형으로 인해 행정경계 지역에서 산불위험등급(관심-주의-경계-심각 4단계)의 차이가 발생하여 산불담당자들간 혼선을 야기할 수 있고, 이로 인해 인접 시군 경계 간 산불대응력이 떨어질 수 있다는 것이다. 이의 해결을 위해 기존 9개의 산불발생확률모형을 하나로 통합하는 산불발생확률모형을 개발하여 신뢰도 검증과 실제로 산불이 발생한 지점에서 예측된 산불위험지수 값을 추출하여 정확도 평가를 실시하였다. 새롭게 개발한 기상에 의한 봄철과 가을철의 전국 통합 산불발생확률 모형(DWI)은 국립산림과학원에서 운영하는 국가산불위험예보시스템에 반영하여 예측모델을 개선하였다. 연구 결과, 봄철 산불발생에 영향을 주는 기상변수로는 해당 시간대의 평균기온, 상대습도, 실효습도, 평균풍속이었으며, 가을철은 평균기온, 상대습도, 평균풍속으로 나타났으며 모두 99% 신뢰수준에서 통계적으로 유의한 것으로 나타났다. 봄철과 가을철의 전국 통합 산불발생확률 모형은 각각 $[1+{\exp}\{-(2.706+(0.088^*T_{mean})-(0.055^*Rh)-(0.023^*Eh)-(0.014^*W_{mean}))\}^{-1}]^{-1}$, $[1+{\exp}\{-(1.099+(0.117^*T_{mean})-(0.069^*Rh)-(0.182^*W_{mean}))\}^{-1}]^{-1}$으로 표본내 예측력은 봄철이 71.7%, 가을철은 86.9%로 나타나 모형의 적합도는 매우 높은 것으로 나타났다. 기존의 도별 9개 모형을 하나의 전국 통합 모형으로 적용할 경우 인접 행정경계에서 발생하는 위험등급의 차이를 해소하여 산불조심기간 중 발효되는 산불위험 단계별 조치사항의 이행에 혼란을 피할 수 있다는 장점이 있다. 새롭게 개발한 전국 통합 산불발생확률 모형(DWI)의 예측 결과 검증을 위해 2014년 봄철 발생한 산불 66건을 대상으로 산불위험지수의 정확도를 평가하였으며, 주의 단계인 산불위험지수 51이상으로 예측된 지역에서 실제로 산불이 발생한 비율은 기존 9개 모형에서 74.24% (산불 49건), 새롭게 개발한 전국 통합 모형에서는 83.33% (산불 55건)가 발생하여 약 9%의 정확도 향상을 보였다. 개발된 모형은 현재 운영중인 산림청 국립산림과학원의 국가산불위험예보시스템에 반영하여 산불이 가장 많이 발생하는 봄철과 가을철 건조시기의 산불발생위험을 정확히 예측하여 산불예방은 물론 진화자원의 효율적인 배치를 통해 시간과 인적 경제적 비용을 절감하고 산불피해를 최소화 할 수 있는 선택과 집중의 산불정책에 일조할 수 있을 것으로 기대된다.

Vulnerability of Pinus densiflora to forest fire based on ignition characteristics

  • Seo, Hyung-Soo;Choung, Yeon-Sook
    • Journal of Ecology and Environment
    • /
    • 제33권4호
    • /
    • pp.343-349
    • /
    • 2010
  • In Korea, man-caused forest fires are known originate primarily in coniferous forests. We have hypothesized that the vulnerability of Pinus densiflora forests is principally a consequence of the ignition characteristics of the species. To assess this hypothesis, we conducted two combustion experiments using fallen leaves with a reference species, Quercus variabilis. In the first experiments, in which a cigarette was employed as a primary heat source for the initiation of a forest fire, the Pinus leaves caught fire significantly faster (1'1" at Pinus, 1'31" at Quercus, P < 0.001), and ignition proceeded normally. Quercus leaves, on the other hand, caught fire but did not ignite successfully. In the second set of experiments utilizing different moisture contents and fuel loads, the maximum flame temperature of the Pinus leaves was significantly higher ($421^{\circ}C$ at Pinus, $361^{\circ}C$ at Quercus, P < 0.001) and the combustion persisted for longer than in the Quercus leaves (8'8" at Pinus, 3'38" at Quercus, P < 0.001). The moisture contents of the leaves appeared to be a more important factor in the maximum temperature achieved, whereas the most important factor in burning time was the amount of fuel. Overall, these results support the assumption that Pinus leaves can be ignited even by low-heat sources such as cigarettes. Additionally, once ignited, Pinus leaves burn at a relatively high flame temperature and burn for a prolonged period, thus raising the possibility of frequent fire occurrences and spread into crown fires in forests of P. densiflora.

Efficient Forest Fire Detection using Rule-Based Multi-color Space and Correlation Coefficient for Application in Unmanned Aerial Vehicles

  • Anh, Nguyen Duc;Van Thanh, Pham;Lap, Doan Tu;Khai, Nguyen Tuan;Van An, Tran;Tan, Tran Duc;An, Nguyen Huu;Dinh, Dang Nhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.381-404
    • /
    • 2022
  • Forest fires inflict great losses of human lives and serious damages to ecological systems. Hence, numerous fire detection methods have been proposed, one of which is fire detection based on sensors. However, these methods reveal several limitations when applied in large spaces like forests such as high cost, high level of false alarm, limited battery capacity, and other problems. In this research, we propose a novel forest fire detection method based on image processing and correlation coefficient. Firstly, two fire detection conditions are applied in RGB color space to distinguish between fire pixels and the background. Secondly, the image is converted from RGB to YCbCr color space with two fire detection conditions being applied in this color space. Finally, the correlation coefficient is used to distinguish between fires and objects with fire-like colors. Our proposed algorithm is tested and evaluated on eleven fire and non-fire videos collected from the internet and achieves up to 95.87% and 97.89% of F-score and accuracy respectively in performance evaluation.

The Change in Fuel Moisture Contents on the Forest Floor after Rainfall

  • Songhee Han;Heemun Chae
    • Journal of Forest and Environmental Science
    • /
    • 제39권4호
    • /
    • pp.235-245
    • /
    • 2023
  • Forest fuel moisture content is a crucial factor influencing the combustion rate and fuel consumption during forest fires, significantly impacting the occurrence and spread of wildfires. In this study, meteorological data were gathered using a meteorological measuring device (HOBO data logger) installed in the south and north slopes of Kangwon National University Forest, as well as on bare land outside the forest, from November 1, 2021, to October 31, 2022. The objective was to analyze the relationship between meteorological data and fuel moisture content. Fuel moisture content from the ground cover on the south and north slopes was collected. Fallen leaves on the ground were utilized, with a focus on broad-leaved trees (Prunus serrulata, Quercus dentata, Quercus mongolica, and Castanea crenata) and coniferous trees (Pinus densiflora and Pinus koraiensis), categorized by species. Additionally, correlation analysis with fuel moisture content was conducted using temperature (average, maximum, and minimum), humidity (average, minimum), illuminance (average, maximum, and minimum), and wind speed (average, maximum, and minimum) data collected by meteorological measuring devices in the study area. The results indicated a significant correlation between meteorological factors such as temperature, humidity, illuminance, and wind speed, and the moisture content of fuels. Notably, exceptions were observed for the moisture content of the on the north slope and that of the ground cover of Prunus serrulata and Castanea crenata.

Atmospheric Carbon Dioxide Levels in Garhwal Himalaya, India

  • Anthwal, Ashish;Joshi, V.;Joshi, S.C;Sharma, Archana;Kim, Ki-Hyun
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.588-597
    • /
    • 2009
  • Measurements of atmospheric $CO_2$ were made in the mountainous region of Srinagar-Garhwal, India (January to December 2006). Concentrations of $CO_2$ averaged $393\pm4.9$ ppm in 2006. Daily variations of $CO_2$ values showed minimum during the daytime (376.2 ppm) and peaked in the morning/evening (410.1 ppm). At monthly intervals, the $CO_2$ values varied from $367\pm11.14$ (May) to $425.2\pm13.54$ ppm (March). If divided on a seasonal basis, the values declined to minimum amounts in post-monsoon ($389.9\pm9.0$ ppm) and reached maximums during winter ($397.1\pm11.6$ ppm). Although phenology is significant in controlling $CO_2$ levels, short-term changes cannot be explained without the anthropogenic perturbations (e.g., vehicular pollution and forest fires). The $CO_2$ concentrations in Srinagar-Garhwal (393.4 ppm) were generally higher than those of other major monitoring locations around the world.

통전 중 산불에 노출된 가공송전선의 온도 및 장력 변화 거동 (Temperature and Load Change behavior of Overhead Conductor under loading current due to Forest Fire)

  • 김병걸;장용호;김상수;한세원
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.366-371
    • /
    • 2009
  • The authors have published several technical reports on the deterioration of conductor due to forest fire in series so far. This is because even we have been experiencing hundreds of forest fires every year, no systematic research on conductor which is very vulnerable to fire have been fulfilled. This paper describes the sag-tension behavior of conductor under loading current normally when only partial area of a long conductor is exposed to fire. Temperatures of Overhead Conductor were different with measurement position. When the partial area of conductor was heated up to $500^{\circ}C$, 20 % of permanent tension loss was observed. This results in the increase of sag of 1.5 m when span is 300 m. The other results will be presented in the text.