• Title/Summary/Keyword: Forest fire probability model

Search Result 22, Processing Time 0.025 seconds

Development of Large Fire Judgement Model Using Logistic Regression Equation (로지스틱 회귀식을 이용한 대형산불판정 모형 개발)

  • Lee, Byungdoo;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.415-419
    • /
    • 2013
  • To mitigate forest fire damage, it is needed to concentrate suppression resources on the fire having a high probability to become large in the initial stage. The objective of this study is to develop the large fire judgement model which can estimate large fire possibility index between the fire size and the related factors such as weather, terrain, and fuel. The results of logistic regression equation indicated that temperature, wind speed, continuous drought days, slope variance, forest area were related to the large fire possibility positively but elevation has negative relationship. This model may help decision-making about size of suppression resources, local residents evacuation and suppression priority.

Developing Korean Forest Fire Occurrence Probability Model Reflecting Climate Change in the Spring of 2000s (2000년대 기후변화를 반영한 봄철 산불발생확률모형 개발)

  • Won, Myoungsoo;Yoon, Sukhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2016
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for practical forecasting of forest fire danger rate by reflecting the climate change for the time period of 2000yrs. Forest fire in South Korea is highly influenced by humidity, wind speed, temperature, and precipitation. To effectively forecast forest fire occurrence, we developed a forest fire danger rating model using weather factors associated with forest fire in 2000yrs. Forest fire occurrence patterns were investigated statistically to develop a forest fire danger rating index using times series weather data sets collected from 76 meteorological observation centers. The data sets were used for 11 years from 2000 to 2010. Development of the national forest fire occurrence probability model used a logistic regression analysis with forest fire occurrence data and meteorological variables. Nine probability models for individual nine provinces including Jeju Island have been developed. The results of the statistical analysis show that the logistic models (p<0.05) strongly depends on the effective and relative humidity, temperature, wind speed, and rainfall. The results of verification showed that the probability of randomly selected fires ranges from 0.687 to 0.981, which represent a relatively high accuracy of the developed model. These findings may be beneficial to the policy makers in South Korea for the prevention of forest fires.

Effects of Geological Structure and Tree Density on the Forest Fire Patterns (지형구조와 나무밀도가 산불패턴에 미치는 영향)

  • Song, Hark-Soo;Kwon, Oh Sung;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Development of Fire Weather Index Model in Inaccessible Areas using MOD14 Fire Product and 5km-resolution Meteorological Data (MODIS Fire Spot 정보와 5km 기상 재분석 자료를 활용한 접근불능지역의 산불기상위험지수 산출 모형 개발)

  • WON, Myoung-Soo;JANG, Keun-Chang;YOON, Suk-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.189-204
    • /
    • 2018
  • This study has developed a forest fire occurrence probability model for inaccessible areas such as North Korea and Demilitarized Zone and we have developed a real-time forest fire danger rating system that can be used in fire-related works. There are limitations on the research that it is impossible to conduct site investigation for data acquisition and verification for forest fire weather index model and system development. To solve this problem, we estimated the fire spots in the areas where access is impossible by using MODIS satellite data with scientific basis. Using the past meteorological reanalysis data(5㎞ resolution) produced by the Korea Meteorological Administration(KMA) on the extracted fires, the meteorological characteristics of the fires were extracted and made database. The meteorological factors extracted from the forest fire ignition points in the inaccessible areas are statistically correlated with the forest fire occurrence and the weather factors and the logistic regression model that can estimate the forest fires occurrence(fires 1 and non-fores 0). And used to calculate the forest fire weather index(FWI). The results of the statistical analysis show that the logistic models(p<0.01) strongly depends on maximum temperature, minimum relative humidity, effective humidity and average wind speed. The logistic regression model constructed in this study showed a relatively high accuracy of 66%. These findings may be beneficial to the policy makers in Republic of Korea(ROK) and Democratic People's Republic of Korea(DPRK) for the prevention of forest fires.

A Study on the Disaster Prevention of the Royal Tomb Eureung in the Mountain Cheonjang - Estimation on Forest Fire Risk Considering Forest Type and Topography - (천장산 의릉의 방재대책에 관한 연구 - 임상과 지형인자를 고려한 산불위험성 평가 -)

  • Won, Myoung-Soo;Lee, Woo-Kyun;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The purpose of this study is to analyze the risk of the forest fire, considering the topography and the forest, for establishing disaster prevention measures of cultural heritage, Uireung, over in Cheonjang-mountain. To do that, we estimate the occurrence and spread of the forest fire over in Cheonjang-mountain through a forest fire probability model(logistic regression), using the space characteristic data($100m{\times}100m$). The factor, occurrence of the forest fire, are diameter class, southeast, southwest, south, coniferous, deciduous, and mixed forest. We assume the probability of the fire forest in each point as follow : [1+exp{-(-4.8081-(0.02453*diameter class)+(0.6608*southeast)+(0.507*southwest)+(0.7943*south)+(0.29498*coniferous forest)+(0.28897*deciduous forest)+(0.17788*mixed forest))}]$^{-1}$. To divide dangerous zone of the big forest fire, we make the basic materials for disaster prevention measures, through the map of coniferous forests, deciduous forests, and mixed forest. The damage of cultural heritage caused by a forest fire will be reduced through the effective preventive measures, by forecast a forest fire to using this study.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

A Simulation Model for the Study on the Forest Fire Pattern (산불확산패턴 연구를 위한 시뮬레이션 모델)

  • Song, Hark-Soo;Jeon, Wonju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Because forest fires are predicted to increase in severity and frequency under global climate change with important environmental implications, an understanding of fire dynamics is critical for mitigation of these negative effects. For the reason, researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed the simulation models to mimic the forest fire spread patterns. In this study, we suggested a novel model considering the wind effect. Our theoretical forest was comprised of two different tree species with varying probabilities of transferring fire that were randomly distributed in space at densities ranging from 0.0 (low) to 1.0 (high). We then studied the distributional patterns of burnt trees using a two-dimensional stochastic cellular automata model with minimized local rules. We investigated the time, T, that the number of burnt trees reaches 25% of the whole trees for different values of the initial tree density, fire transition probability, and the degree of wind strength. Simulation results showed that the values of T decreased with the increase of tree density, and the wind effect decreased in the case of too high or low tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Development of the National Integrated Daily Weather Index (DWI) Model to Calculate Forest Fire Danger Rating in the Spring and Fall (봄철과 가을철의 기상에 의한 전국 통합 산불발생확률 모형 개발)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behavior and its spread. Thus, meteorological factors as well as topographical and forest factors were considered in the fire danger rating systems. This study aims to develop an advanced national integrated daily weather index(DWI) using weather data in the spring and fall to support forest fire prevention strategy in South Korea. DWI represents the meteorological characteristics, such as humidity (relative and effective), temperature and wind speed, and we integrated nine logistic regression models of the past into one national model. One national integrated model of the spring and fall is respectively $[1+{\exp}\{-(2.706+(0.088^*T_{mean})-(0.055^*Rh)-(0.023^*Eh)-(0.014^*W_{mean}))\}^{-1}]^{-1}$, $[1+{\exp}\{-(1.099+(0.117^*T_{mean})-(0.069^*Rh)-(0.182^*W_{mean}))\}^{-1}]^{-1}$ and all weather variables significantly (p<0.01) affected the probability of forest fire occurrence in the overall regions. The accuracy of the model in the spring and fall is respectively 71.7% and 86.9%. One integrated national model showed 10% higher accuracy than nine logistic regression models when it is applied weather data with 66 random sampling in forest fire event days. These findings would be necessary for the policy makers in the Republic of Korea for the prevention of forest fires.

Prediction of Forest Fire Danger Rating over the Korean Peninsula with the Digital Forecast Data and Daily Weather Index (DWI) Model (디지털예보자료와 Daily Weather Index (DWI) 모델을 적용한 한반도의 산불발생위험 예측)

  • Won, Myoung-Soo;Lee, Myung-Bo;Lee, Woo-Kyun;Yoon, Suk-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Digital Forecast of the Korea Meteorological Administration (KMA) represents 5 km gridded weather forecast over the Korean Peninsula and the surrounding oceanic regions in Korean territory. Digital Forecast provides 12 weather forecast elements such as three-hour interval temperature, sky condition, wind direction, wind speed, relative humidity, wave height, probability of precipitation, 12 hour accumulated rain and snow, as well as daily minimum and maximum temperatures. These forecast elements are updated every three-hour for the next 48 hours regularly. The objective of this study was to construct Forest Fire Danger Rating Systems on the Korean Peninsula (FFDRS_KORP) based on the daily weather index (DWI) and to improve the accuracy using the digital forecast data. We produced the thematic maps of temperature, humidity, and wind speed over the Korean Peninsula to analyze DWI. To calculate DWI of the Korean Peninsula it was applied forest fire occurrence probability model by logistic regression analysis, i.e. $[1+{\exp}\{-(2.494+(0.004{\times}T_{max})-(0.008{\times}EF))\}]^{-1}$. The result of verification test among the real-time observatory data, digital forecast and RDAPS data showed that predicting values of the digital forecast advanced more than those of RDAPS data. The results of the comparison with the average forest fire danger rating index (sampled at 233 administrative districts) and those with the digital weather showed higher relative accuracy than those with the RDAPS data. The coefficient of determination of forest fire danger rating was shown as $R^2$=0.854. There was a difference of 0.5 between the national mean fire danger rating index (70) with the application of the real-time observatory data and that with the digital forecast (70.5).

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.