• Title/Summary/Keyword: Forest fire probability model

Search Result 22, Processing Time 0.025 seconds

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

Developing the Forest Fire Occurrence Probability Model Using GIS and Mapping Forest Fire Risks (공간분석에 의한 산불발생확률모형 개발 및 위험지도 작성)

  • An, Sang-Hyun;Lee, Si Young;Won, Myoung Soo;Lee, Myung Bo;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.57-64
    • /
    • 2004
  • In order to decrease the area damaged by forest fires and to prevent the occurrence of forest fires, the forest fire danger rating system was developed to estimate forest fire risk by means of weather, topography, and forest type. Forest fires occurrence prediction needs to improve continually. Logistic regression and spatial analysis was used in developing the forest fire occurrence probability model. The forest fire danger index in accordance to the probability of forest fire occurrence was used in the classification of forest fire occurrence risk regions.

  • PDF

Development of Forest Fire Occurrence Probability Model Using Logistic Regression (로지스틱 회귀모형을 이용한 산불발생확률모형 개발)

  • Lee, Byungdoo;Ryu, Gyesun;Kim, Seonyoung;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • To achieve the forest fire management goals such as early detection and quick suppression, fire resources should be allocated at high probability area where forest fires occur. The objective of this study was to develop and validate models to estimate spatially distributed probabilities of occurrence of forest fire. The models were builded by exploring relationships between fire ignition location and forest, terrain and anthropogenic factors using logistic regression. Distance to forest, cemetery, fire history, forest type, elevation, slope were chosen as the significant factors to the model. The model constructed had a good fit and classification accuracy of the model was 63%. This model and map can support the allocation optimization of forest fire resources and increase effectiveness in fire prevention and planning.

Classification of Forest Fire Occurrence Risk Regions Using Forest Site Digital Map (수치산림입지도를 이용한 산불발생위험지역 구분)

  • An Sang-Hyun;Won Myoung-Soo;Kang Young-Ho;Lee Myung-Bo
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.64-69
    • /
    • 2005
  • In order to decrease the area damaged by forest fires and to prevent the occurrence of forest fires, we are making an effort to improve prevention measures for forest fires. The objective of this study is developing the forest fire occurrence probability model by means of forest site characteristics such as soil type, topography, soil texture, slope, and drainage and forest fire sites. Conditional probability analysis and GIS were used in developing the forest fire occurrence probability model that was used in the classification of forest fire occurrence risk regions.

Development of Crown Fire Propagation Probability Equation Using Logistic Regression Model (로지스틱 회귀모형을 이용한 수관화확산확률식의 개발)

  • Ryu, Gye-Sun;Lee, Byung-Doo;Won, Myoung-Soo;Kim, Kyong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Crown fire, the main propagation type of large forest fire, has caused extreme damage with the fast spread rate and the high flame intensity. In this paper, we developed the probability equation to predict the crown fires using the spatial features of topography, fuel and weather in damaged area by crown fire. Eighteen variables were collected and then classified by burn severity utilizing geographic information system and remote sensing. Crown fire ratio and logistic regression model were used to select related variables and to estimate the weights for the classes of each variables. As a results, elevation, forest type, elevation relief ratio, folded aspect, plan curvature and solar insolation were related to the crown fire propagation. The crown fire propagation probability equation may can be applied to the priority setting of fuel treatment and suppression resources allocation for forest fire.

Predicting on Human-caused Forest Fire Occurrence in South Korea

  • Chae, Hee Mun;Lee, Chan yong
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.2
    • /
    • pp.160-167
    • /
    • 2006
  • Most of the forest fires that occur in South Korea are caused by human. We partitioned South Korea into nine districts and used observed weather data and daily fire occurrence records for the 1994 to 2003 period to develop a human-caused fire occurrence model of South Korea. Logistic regression analysis techniques were used to relate the probability of a fire day to Fine Fuel Moisture Code (FFMC) component of the Canadian Forest Fire Danger Rating System. The probability of the number of fire day was increased as FFMC increased in the nine districts of South Korea.

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.

Developing Forest Fire Occurrence Probability Model Using Meteorological Characteristics (기상자료(氣象資料)를 이용(利用)한 산불발생확률모형(發生確率模型)의 개발(開發))

  • Choi, Kwan;Han, Sang Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • Preparing the era of forest resources management requires studies on forest fire. This study attempted to develop forest fire occurrence model using meteorological characteristics for the practical purposes of forecasting forest fire danger rate. To accomplish this goal, the relationships between forest fire occurrence and meteorological characteristics are estimated. In the process, the forest fire occurrence pattern of the study region(Taegu-Kyungpook) is categorized by employing qualification IV method. The study region was divided into three areas such as, Taegu, Andong and Pohang area. The meteorological variables emerged as affective to forest fire occurrence are relative humidity, longitude of sunshine, and duration of precipitation. To estimate the probability of forest fire danger, forest fire occurrence of three areas are regressed on the time series data of affective meteorological variables using logistic and probit model. The effectiveness of the models estimated are tested and showed acceptable degree of goodness. Those models developed would be helpful to increase the efficiency of forest fire management such as detection of forest fire occurrence and effective disposition of forest fire fight equipments.

  • PDF

Meteorological Determinants of Forest Fire Occurrence in the Fall, South Korea

  • Won, Myoung-Soo;Miah, Danesh;Koo, Kyo-Sang;Lee, Myung-Bo;Shin, Man-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.163-171
    • /
    • 2010
  • Forest fires have potentials to change the structure and function of forest ecosystems and significantly influence on atmosphere and biogeochemical cycles. Forest fire also affects the quality of public benefits such as carbon sequestration, soil fertility, grazing value, biodiversity, or tourism. The prediction of fire occurrence and its spread is critical to the forest managers for allocating resources and developing the forest fire danger rating system. Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behaviors and its spread. Thus, meteorological factors as well as social factors were considered in the fire danger rating systems. A total of 298 forest fires occurred during the fall season from 2002 to 2006 in South Korea were considered for developing a logistic model of forest fire occurrence. The results of statistical analysis show that only effective humidity and temperature significantly affected the logistic models (p<0.05). The results of ROC curve analysis showed that the probability of randomly selected fires ranges from 0.739 to 0.876, which represent a relatively high accuracy of the developed model. These findings would be necessary for the policy makers in South Korea for the prevention of forest fires.