Development of Forest Fire Occurrence Probability Model Using Logistic Regression

로지스틱 회귀모형을 이용한 산불발생확률모형 개발

  • Lee, Byungdoo (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Ryu, Gyesun (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Kim, Seonyoung (Division of forest Disaster Management, Korea Forest Research Institute) ;
  • Kim, Kyongha (Division of forest Disaster Management, Korea Forest Research Institute)
  • 이병두 (국립산림과학원 산림방재연구과) ;
  • 유계선 (국립산림과학원 산림방재연구과) ;
  • 김선영 (국립산림과학원 산림방재연구과) ;
  • 김경하 (국립산림과학원 산림방재연구과)
  • Published : 2012.03.31

Abstract

To achieve the forest fire management goals such as early detection and quick suppression, fire resources should be allocated at high probability area where forest fires occur. The objective of this study was to develop and validate models to estimate spatially distributed probabilities of occurrence of forest fire. The models were builded by exploring relationships between fire ignition location and forest, terrain and anthropogenic factors using logistic regression. Distance to forest, cemetery, fire history, forest type, elevation, slope were chosen as the significant factors to the model. The model constructed had a good fit and classification accuracy of the model was 63%. This model and map can support the allocation optimization of forest fire resources and increase effectiveness in fire prevention and planning.

산불의 빠른 탐지와 진화를 위해서는 산불이 발생할 가능성이 높은 곳에 산불예방과 진화를 위한 자원을 집중적으로 배치하여야 한다. 이를 위해 임상, 지형 인자, 사회-공간 인자를 이용하여 산불발생확률을 추정할 수 있는 로지스틱 회귀모형을 개발하고, 이를 통해 전국 산불발생확률지도를 작성하였다. 모형 추정 결과 산림 및 묘지와의 거리, 과거의 산불빈도, 침엽수림, 낮은 고도, 급경사에서 산불발생확률이 높은 것으로 나타났으며, 분류정확도는 63% 이었다. 개발된 모형과 지도는 한정된 산불자원을 최적으로 배치하는데 참고자료로 활용될 수 있을 것이다.

Keywords

References

  1. 산림청. 2010. 2010년 산불통계연보. 228.
  2. 안상현, 이시영, 원명수, 이명보, 신영철. 2004. 공간분석에 의한 산불발생확률모형 개발 및 위험지도 작성. 한국지리정보학회지 7(4): 57-65.
  3. 이병두, 이명보. 2009. 1991년부터 2007년까지 산불의 공간적 특성. 한국화재소방학회지 23(1): 15-20.
  4. 이병두, 이요한, 이명보, Heidi J. Albers. 2011. 한국 산불 발생에 대한 확률 시뮬레이션 모델 개발. 한국임학회지 100(1): 70-78.
  5. Carter, G.M. and Rolph, J.E. 1975. New York City fire alarm prediction models. II. Alram rates. The New York City Rand Institute, New York.
  6. Catry, F.X., Rego, F.C., Bacao, F. and Moreira, F. 2009. Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire 18: 921-931. https://doi.org/10.1071/WF07123
  7. Chou, Y.H., Minnich, R.A. and Chase, R.A. 1993. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environmental Management 17(1): 129-140. https://doi.org/10.1007/BF02393801
  8. Díaz-Avalos, C., Peterson, D.L., Alvarado, E., Ferguson, S.A. and Besag, J.E. 2001. Space-time modelling of lightning caused ignitions in the Blue Mountains, Oregon. Canadian Journal of Forest Research 31: 1579-1593.
  9. Gonzalez, J.R., Palahi, M., Trasobares, A. and Pukkala, T. 2006. A fire probability model for forest stands in Catalonia( north east Spain). Annual Forest Science 63: 169-176. https://doi.org/10.1051/forest:2005109
  10. Guyette, R.P., Muzika, R.M. and Dey, D.C. 2002. Dynamics of an anthropogenic fire regime. Ecosystems 5: 472-486.
  11. Larjavaara, M., Kuuluvainen, T. and Rita, H. 2005. Spatial distribution of lightning-ignited forest fires in Finland. Forest Ecology and Management 208(1-3): 177-188. https://doi.org/10.1016/j.foreco.2004.12.005
  12. Lee, B., Park, P.S. and Chung, J. 2006. Temporal and spatial characteristics of forest fires in South Korea between 1970 and 2003. International Journal of Wildland Fire 15: 389-396. https://doi.org/10.1071/WF05090
  13. Martell, D.L., Otukol, S. and Stocks, B.J. 1987. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forest Research 17: 394-401. https://doi.org/10.1139/x87-068
  14. Martell, D.L. and Bevilacqua, E. 1989. Modelling seasonal variation in daily people-caused forest fire occurrence. Canadian Journal of Forest Research 19: 1555-1563. https://doi.org/10.1139/x89-237
  15. Mermoz, M., Kitzberger, T. and Veblen, T.T. 2005. Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrub lands. Ecology 86(10): 2705-2715. https://doi.org/10.1890/04-1850
  16. Nickey, B.B. and Chapman, C.B. 1979. Evaluating fire prevention effectiveness through a probability model. Fire Technology 15: 291-306. https://doi.org/10.1007/BF02098678
  17. Podur, J., Martell, D.L. and Csillag, F. 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecological Modelling 164(1): 1-20. https://doi.org/10.1016/S0304-3800(02)00386-1
  18. Romero-Calcerrada, R., Novillo, C.J., Millington, J.D.A. and Gomez-Jimenez, I. 2008. GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid(Central spain). Landscape Ecology 23: 341-354. https://doi.org/10.1007/s10980-008-9190-2
  19. Ryan, K.C. 2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica 36(1): 13-39.
  20. Turner, M.G. and Romme, W.H. 1994. Landscape dynamics in crown fire ecosystems. Landscape Ecology 9(1): 59-77. https://doi.org/10.1007/BF00135079
  21. Vasconcelos, M.J.P., Silva, S., Tome, M., Alvim, M. and Pereira, J.M.C. 2001. Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks. Photogrammetric Engineering & Remote Sensing 67(1): 73-81.
  22. Vilar, L., Nieto, H. and Martín M.P. 2010. Integration of lightning- and Human-caused wildfire occurrence models. Human and Ecological Risk Assessment: An International Journal 16(2): 340-364. https://doi.org/10.1080/10807031003670469
  23. Wotton, B.M. and Martell, D.L. 2005. A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research 35(6): 1389-1401. https://doi.org/10.1139/x05-071
  24. Yang, J., He, H.S., Shifley, S.R. and Gustafson, E.J. 2007. Spatial Patterns of Modern Period Human-Caused Fire Occurrence in the Missouri Ozark Highlands. Forest Science 53(1): 1-15.