• Title/Summary/Keyword: Forest fire damaged area

Search Result 78, Processing Time 0.028 seconds

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.

Monitoring of Forest Burnt Area using Multi-temporal Landsat TM and ETM+ Data

  • Lee, Seung-Ho;Kim, Cheol-Min;Cho, Hyun-Kook
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..

An Impact Analysis and Prediction of Disaster on Forest Fire

  • Kim, Youn Su;Lee, Yeong Ju;Chang, In Hong
    • Journal of Integrative Natural Science
    • /
    • v.13 no.1
    • /
    • pp.34-40
    • /
    • 2020
  • This study aims to create a model for predicting the number of extinguishment manpower to put out forest fires by taking into account the climate, the situation, and the extent of the damage at the time of the forest fires. Past research has been approached to determine the cause of the forest fire or to predict the occurrence of a forest fire. How to deal with forest fires is also a very important part of how to deal with them, so predicting the number of extinguishment manpower is important. Therefore predicting the number of extinguishment manpower that have been put into the forest fire is something that can be presented as a new perspective. This study presents a model for predicting the number of extinguishment manpower inputs considering the scale of the damage with forest fire on a scale bigger than 0.1 ha as data based on the forest fire annual report(Korea Forest Service; KFS) from 2015 to 2018 using the moderated multiple regression analysis. As a result, weather factors and extinguished time considering the damage show that affect forest fire extinguishment manpower.

Comparison a Forest Fire Spread variation according to weather condition change (기후조건 변화에 따른 산불확산 변화 비교)

  • Lee, Si-Young;Park, Houng-Sek
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.490-494
    • /
    • 2008
  • We simulated a forest fire which was occurred in Yangyang area on 2005 and compared a results between two different weather conditions(real weather condition and mean weather condition since 1968) using FARSITE, which is a forest fire spread simulator for preventing and predicting fire in USDA. And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. In the result, severe weather condition on 2005 effected a forest fire behavior. The rate of spread under real weather condition was about 4 times faster than mean weather condition. Damaged area was about 10 time than mean weather condition. Therefore, Climate change will make a more sever fire season. As we will encounter to need for accurate prediction in near future, it will be necessary to predict a forest fire linked with future wether and fuel condition.

  • PDF

The Restoration of Forest Fire Area in Kagawa Prefecture, Japan (일본 가가와현 산불피해지의 복구대책)

  • Chun, Kun-Woo;Lee, Si-Young;Lim, Young-Hyup;Kakihara, Toshiko;Ezaki, Tsugio
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.238-241
    • /
    • 2007
  • The forest seemed apparently to die on the forest fire area in Honjima, Kagawa Prefecture, Japan. However, the soil that became growing basic of vegetation hardly suffered damage, and the forest recovery was started by the sprout, etc. in the next year. For restoration of forest fire area, the fascine mulching works and log barrier works using the damaged trees were used for the upper-stream, and chack dam and erosion control dam were set up in the downstream. Also, the forest restoration was tried with the plants and the microorganism that inhabit in Honjima to preserve a peculiar forest ecosystem.

  • PDF

A FORECASTING METHOD FOR FOREST FIRES BASED ON THE TOPOGRAPHICAL CLASSIFICATION SYSTEM AND SPREADING SPEED OF FIRE

  • Koizumi, Toshio
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.311-318
    • /
    • 1997
  • On April 27,1993, a forest fire occurred in Morito-area, Manba-city, Gunma-prefecture Japan. Under the prevailing strong winds, the fire spread and extended to the largest scale ever in Gunma-prefecture. The author chartered a helicopter on May 5, one week after the fire was extinguished, and took aerial photos of tile damaged area, and investigated the condition. of the fire through field survey and data collection. The burnt area extended. over about 100 hectares, and the damage amounted to about 190 million yen (about two million dollar). The fire occurred at a steep mountainous area and under strong winds, therefore, md and topography strongly facilitated the spreading, It is the purpose of this paper to report a damage investigation of the fire and to develop the forecasting method of forest fires based on the topographical analysis and spreading speed of fire. In the first place, I analyze the topographical structure of the regions which became the bject of this study with some topographical factors, and construct a land form classification ap. Secondly, I decide the dangerous condition of each region in the land form classification map according to the direction of the wind and spreading speed of f'kre. In the present paper, I try to forecast forest fires in Morito area, and the basic results for the forecasting method of forest fires were obtained with the topographical classification system and spreading speed of fire.

  • PDF

Analysis of Forest Fire Damage Using LiDAR Data and SPOT-4 Satellite Images (LiDAR 자료 및 SPOT-4 위성영상을 활용한 산불피해 분석)

  • Song, Yeong Sun;Sohn, Hong Gyoo;Lee, Seok Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.527-534
    • /
    • 2006
  • This study estimated the forest damage of Kangwon-Do fire disaster occurred April 2005. For the estimation, the delineation of fire damaged area was performed using SPOT-4 satellite image and DSM (Digital surface model)/DTM (Digital Terrain Model) was generated by airborne and ground LiDAR data to calculate forests height. The damaged amount of money was calculated in forest area using stand volume formula, combining the canopy height from forest height model and digital stock map. The total forest damage amounted to 3.9 billion won.

The Study of Burned-Area Analysis Method for Forest-fire Damaged Area - Investigation for ImSil County, GyeongJu City - (산불피해 현장답사를 통한 연소면적 산출 연구 - 임실, 경주 산불을 중심으로 -)

  • Kang, Seo-Young;Lee, Jung-Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • In this research the 2009 spring occurred during forest fire ImSil and research destination GyeongJu has been selected. Research in the field of the target time exploratory Boundary Data through after air photos, satellite photos and topographic map by using the combustion area was calculated. 2009 March 1-forest fire occurs on the day of the weather information and weather changes wildfire in the check in any affected. Study research destination of combustion is ImSil 161 ha, GyeongJu 270.93 ha. The impact of the weather-temperature dry weather forest fires this favorable situation to occur and the wind directions and the spread of the mountain wind speed was less impact has no arguments.

Comparison of vegetation recovery according to the forest restoration technique using the satellite imagery: focus on the Goseong (1996) and East Coast (2000) forest fire

  • Yeongin Hwang;Hyeongkeun Kweon;Wonseok Kang;Joon-Woo Lee;Semyung Kwon;Yugyeong Jung;Jeonghyeon Bae;Kyeongcheol Lee;Yoonjin Sim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.513-525
    • /
    • 2023
  • This study was conducted to compare the level of vegetation recovery based on the forest restoration techniques (natural restoration and artificial restoration) determined using the satellite imagery that targeted forest fire damaged areas in Goseong-gun, Gangwon-do. The study site included the area affected by the Goseong forest fire (1996) and the East Coast forest fire (2000). We conducted a time-series analysis of satellite imagery on the natural restoration sites (19 sites) and artificial restoration sites (12 sites) that were created after the forest fire in 1996. In the analysis of satellite imagery, the difference normalized burn ratio (dNBR) and normalized difference vegetation index (NDVI) were calculated to compare the level of vegetation recovery between the two groups. We discovered that vegetation was restored at all of the study sites (31 locations). The satellite image-based analysis showed that the artificial restoration sites were relatively better than the natural restoration sites, but there was no statistically significant difference between the two groups (p > 0.05). Therefore, it is necessary to select a restoration technique that can achieve the goal of forest restoration, taking the topography and environment of the target site into account. We also believe that in the future, accurate diagnosis and analysis of the vegetation will be necessary through a field survey of the forest fire-damaged sites.