• Title/Summary/Keyword: Forest dynamics

Search Result 235, Processing Time 0.032 seconds

First record of Macrognathus aral (Bloch & Schneider, 1801) from the Himalayan Kingdom of Bhutan

  • Laxmi Sagar;Karma Lodhen Wangmo;Dhan Bdr. Gurung;Karma Wangchuk;Rinchen Dorji;Rupesh Subedi;Tshering Zangmo;Pelden Dorji
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.708-714
    • /
    • 2023
  • This study reports a new record of freshwater fish Macrognathus aral (Bloch & Schneider) from Aiechu-Kalikhola tributary of the Maukhola river in Sarpang, Bhutan. The species was found in shoal of the tributary and was identified using its morphometric characters. It can be identified and distinguished from its congeners reported in Bhutan by dorsal fin rays XIX, 47, anal fin rays III, 52, rostral plates 28, pectoral fin rays 19, caudal fin rays 15, soft rayed part of dorsal and anal fin separated by a notch from rounded caudal fin, and presence of four ocelli at the base of dorsal fins. Further studies are needed to better understand its distribution, ecology, and population dynamics in the country. A key to species belonging to Mastacembelidae of Bhutan including the new record is provided.

A Study on the Forest Vegetation and Soil-environmental Factors Affecting the Water Quality of Iwonch on Stream (이원천 수질에 미치는 삼림식생과 토양환경요인)

  • Bang, Je-Yong;Yang, Keum-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • Characterization of the analysis of forest vegetation, soil environmental conditions and water quality were performed from March 2003 to March 2007. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, forest vegetation and soil environmental conditions were surveyed. The vegetation can be divided into 10 types by $Z\ddot{u}rich$-Montpellier school's method. Pearson coefficients between vegetation type and water quality were correlated with dissolved oxygen (DO) in the Quercus variabilis community at the 5% level and total phosphorus (TP) in the Larix leptolepis plantation at the 1% level. Especially total phosphorous and total nitrogen increased in small basins where the proportion of cultivated and residential area increased. The analysis of influences of pollutant discharge on water quality showed that pollutant charge was very low in forest land area ($Y_{T-P}$=-0.0017X+0.2215, r=0.16, $Y_{COD}$=- 0.0395X+8.5051 r=0.47). The soil types of western area were comparatively simple, but those of eastern area were complicated with regosols, red-yellow soils, lithosoles, etc. The pH, total solid (TS) and volatile substance (VS) of the forest and agricultural land soils collected in each site were 5.4~6.9, 75.8~80.2%, and 3.80%~5.80%, respectively. According to the analytical result of soil environmental conditions, heavy metal contents fell short to the mean value of natural conditions. Runoff amount (Y) and depth of topsoil (X) were negatively correlated, $Y_{ron}=-1.0088X_{top}+35.378$ (r=0.68). The correlation was much lower in up-stream but much higher in down-stream, because permeation into soil particle was larger on down-stream due to its more or less gentle slope. Pearson coefficients between soil pH and water pH were statistically significant at 1% level.

Soil CO2 Efflux Dynamics in Response to Fertilization in Pinus densiflora and Quercus variabilis Stands (소나무와 굴참나무 임분의 시비에 따른 토양 CO2 방출 동태)

  • Baek, Gyeongwon;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.271-280
    • /
    • 2020
  • This study compared soil CO2 efflux rates after fertilization, in Pinus densiflora and Quercus variabilis stands. Compound fertilizers were applied to the forest floor in March 2016, following a one-year calibration period (from March 2015 to February 2016). In situ soil CO2 efflux rates were measured every month during the two-year study periods, using an infrared gas analyzer with a closed chamber system. Mean annual soil CO2 efflux rates were higher following fertilizer application in the P. densiflora and Q. variabilis stands (P. densiflora: 2.180 μmol m-2 s-1; Q. variabilis: 1.977 μmol m-2 s-1) as compared with the rates measured during the calibration period (P. densiflora: 1.620 μmol m-2 s-1; Q. variabilis: 1.557 μmol m-2 s-1). The mean annual soil CO2 efflux rates in the unfertilized treatments of both stands were not significantly different between the two-year study periods. The Q10 values of fertilized treatments in Q. variabilis stands were higher in the fertilization period (3.41) than in the calibration period (3.14), whereas the Q10 values in P. densiflora stands did not change between the fertilization and calibration periods. The Q10 values of unfertilized treatments in the Q. variabilis stands were lower during the 2016-2017 period (3.69), than in the 2015-2016 period (3.85), whereas the Q10 values in P. densiflora stands were higher during the 2016-2017 period (3.65), than in the 2015-2016 period (3.15). These results indicate that the increase in soil CO2 efflux rates in P. densiflora stands could be more sensitive to fertilization compared with the rates in Q. variabilis stands.

Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands (소나무 유령림의 임목밀도 조절이 탄소 동태에 미치는 영향)

  • Song, Su-Jin;Jang, Kyoung-Soo;Hwang, In-Chae;An, Ki-Wan;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.275-283
    • /
    • 2016
  • The objective of this study was to examine carbon dynamics with biomass, soil $CO_2$ efflux, litter and root decomposition after tree density control in young Pinus densiflora stands. The stands were established with 50% thinning, clear-cut, and control stands with three pseudo-replicated plots and a bare soil plot in 8-year-old Pinus densiflora nursery field. Monthly measurements were conducted from March 2012 to February 2014 and aboveground biomass and coarse-roots were estimated by derived allometric equations. Average diameter growth at root collar in control and thinned was 0.89 cm and 1.48 cm per year, respectively, and the diameter growth of control stand was significantly higher than that of thinned stands (p<0.05). Total biomass was estimated to 5.17, $4.85kg\;C\;m^{-2}$ per year in control and thinned, respectively. Annual soil $CO_2$ efflux in control, thinned, clear cut, and bare soil was 3.71, 3.90, 4.17, $4.56kg\;CO_2\;m^{-2}\;yr^{-1}$, respectively and removing trees significantly increased soil $CO_2$ efflux (p<0.05). Net Ecosystem Production (NEP) was 1.57, 1.36, -0.67, $-1.25kg\;C\;m^{-2}\;yr^{-1}$ in control, thinned, clear cut and bare soil in the young Pinus densiflora stands. NEP was significantly decreased by removing trees. Thinning increased diameter at root collar and carbon of individual tree and recovered 86% of carbon removed by thinning after one-year. In addition, soil $CO_2$ efflux increased and NEP increased by thinning. Results of this study, tree density control such as thinning increased the carbon storage and growth of the young Pinus densiflora stands.

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - (계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -)

  • Koo, Hae-Jung;Choi, Young-Jean;Kim, Kyu-Rang;Byon, Jae-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.192-205
    • /
    • 2009
  • The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.

The Study on the Height Characteristics of Abies Nephrolepis Community in South Korea - In the Case of Seorak·Odae·Taebaek National Park - (우리나라 분비나무의 수고 특성 연구 - 설악·오대·태백산국립공원을 대상으로 -)

  • Jin-Won Kim;Ho-Young Lee;Young-Moon Chun;Choong-Hyeon Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • This study investigated whether population dynamic analysis based on the height characteristics of Abies nephrolepis was feasible. It was necessary because existing population dynamic analyses based on age and diameter at breast height (DBH) made it difficult to reflect the slow growth characteristics of Abies nephrolepis in harsh environments of high altitudes. The limitations of population dynamics analysis based on the age and DBH distribution of Abies nephrolepis in Seoraksan, Odaesan, and Taebaeksan National Parks, where Abies nephrolepis populations are representative, were verified, and the characteristics of height growth were investigated to comprehensively analyze whether a vertical structure based on height could reveal the population dynamics. The result of this study showed some limitations in understanding the population dynamics of Abies nephrolepis based on age distribution due to practical difficulties in sampling all trees and variations in age distribution within the same community depending on factors such as light conditions. Moreover, it was challenging to differentiate the distribution of DBH classes at fine levels, making it difficult to reflect the rapid growth characteristics of Abies nephrolepis when light conditions become suitable after prolonged stays in smaller DBH classes under shade conditions. However, a comprehensive analysis of the height characteristics of Abies nephrolepis revealed that the density corresponding to the population dynamic characteristics of Abies was high and adequately reflected the predominant tree death at similar height stages, as well as the U-shaped population dynamics at the lower stratum. Moreover, it was possible to identify a transition point in height values under shaded conditions, where the annual growth of Abies nephrolepis individuals in the lower stratum increases significantly, indicating that Abies nephrolepis individuals can escape from competition with other shrubs and undergo vigorous growth only at this height level. Therefore, this study confirmed that a vertical structure based on height can be utilized to understand the population dynamics of Abies nephrolepis in high altitudes, and it is expected that future studies on height characteristics can intuitively reveal the maintenance status of Abies nephrolepis populations in the field.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Analyses of Landscape and Vegetation and Ecological Suggestion for The Conservation of Mt. Songnisan National Park, Central Korea (속리산 국립공원의 경관 및 식생 분석과 그 보존을 위한 생태학적 제안)

  • 엄안흠;조용찬;신현철;이창석
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • Vegetation established through the natural process, such as Quercus mongolica, Pinus densiflora, Q. variabilis, Q. acutissima, Carpinus laxiflora, Q. aliena and Q. serrata communities and artificially introduced vegetation, which are composed of Larix leptolepis and P. rigida plantations, are established in the mountainous land of the Mt. Songnisan National Park. On the other hand, the developed lands, which are consisted of agricultural folds, residential areas, commercial areas related to tourism, etc. appear in the lowland around streams. Based on the spatial distribution of vegetation, the southern district, which is attributed to Naesongni-myun by administrative system, showed higher natural degree and vegetation diversity. However, most of the other districts, which are attributed to Cheongcheon- and Chilseong-myuns, are covered with the Korean red pine forest, a product of artificial influence, and plantation also occupied higher percentage. Thereby both vegetation diversity and natural degree are lowering. A result of ordination by DCA showed that sands tended to be arranged by depending on the topographic condition. Species diversity of plant communities was higher in broad-leaved stands rather than in coniferous ones and in stands of the early stage than in ones of the late stage. The result of analysis on vegetation dynamics implied that vegetation of this region would be dominated by Carpinus laxiflora, Quercus mongolica and Pinus densiflora communities in the future. However, considered occurrence the of disturbance and response of vegetation on that, this estimation may different somewhat from an actual situation. Conservation strategies of the Mt. Songnisan National Park were discussed in viewpoints of landscape ecology, and conservation of major plant communities and biodiversity.

On the Population Dynamics and Interspecific Competition of Disporum smilacinum and D. viridescens (Liliaceae) in Mt. Nam Park (남산공원 내 애기나리와 큰애기나리 군락의 동태 및 종간 경쟁의 추정)

  • 민병미
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.649-663
    • /
    • 1998
  • The clarify the ecological properties, and to predict change of understory vegetation of mt. Nam Park, population dynamics and interspecific competition of D. smilacinum and D. viridescens, which grow in understory of deciduous broad-leaved forest and pseudo-annuals, were studied from May 20 to May 30 1998. The depth of litter layer, soil moisture content, soil organic matter and soil texture were surveyed in 18 populations (15 D. smilacinum populations and 3 D. viridescens populations). Mean litter layer of d. smilacimum population was thinner than that of D. viridescens populations). Mean litter layer of D. smilacnum population was thinner than that of D. viridescens population. The contents of soil moisture and organic matter of D. smilacinum population were lower than that of D. viridescens population. The D. smilacinum growed in broad range of soil texture but D. viridescens in loamy soil. Because D. smilacinum could tolerate more broad range of soil moisture and soil texture than D. viridescens, the former covered the herb layer in earlier stage and the latter introduced in later stage when rhizome could grow easily. The numbers of individual in two marginal parts were smaller than that in center in same D. smilacinum patch. And the total numbers of individuals grown in (10 ${\times}$ 10)cm were from 0 to 12. The rhizome (subterranean runner) weight, rhizome length, root weight, shoot weight, lea weight and leaf number per subquadrat (cell) increased along the number of individual, that is, increased from marginal part to center. But rhizome weight and rhizome length per individual were vice versa. Therefore, the individuals in marginal part reproduced longer and stronger asexual propagules than that in center. The distribution pattern of D. smilacinum was contageous and that of D. viridescens was random or regular. Therefore, population growth of former was independent on density and that of latter was dependent on density. The distributions of size-class showed normal curves in two population, but the curves based on data of total dry weight showed positive skewness and those of leaf number showed negative skewness The correlation coefficient (CC) values between the properties of each organ were high in two population and significant at 0.1% level. The CC values of D. viridescens were higher of the two. Therefore, the former allocated the energy to each organ stable. The rhizome depth of d. viridescens was 2 times deeper than that of D. smilacinum. And rhizome length and weight of D. viridescens were longer (2 times) or heavier (4 times) than those of D. smilacinum. The patch size of D. viridescens increased 60 cm per year and that of D. smilacinum 30 cm. On this results, the intrinsic increase velocity of d. viridescens patch was 2 times faster than that of d. smilacinum, therefore, on the competition, the former had an advantage over D. smilacinum. The reason why d. viridescens defeated D. smilacinum resulted from that the leaf area of former was 4 times broader than that of latter. in Mt. Nam Park, it was thought that two disporum Population would change with the 3 thpes of environmental change as followings. First, no human impact and increase of soil moisture content resulted in increase of D. viridescens population. Second, mild human impact and similar condition of soil moisture content resulted in slow increase or no changes of D. smilacinum and d. viridescens population. Third, severe human impact and dry condition resulted in decrease or vanishment of two disporum populations.

  • PDF

Effects of fallen blossoms of Prunus spp. on nutrient dynamics in an artificial pond ecosystem (벚나무류 낙화가 인공 연못생태계의 물질순환에 미치는 영향)

  • Lee, Bo Eun;Jeon, Young Joon;Jang, You Lim;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.203-208
    • /
    • 2015
  • To identify the effect of fallen cherry blossom on the artificial pond ecosystem, microcosm experiment was conducted into the aquatic decomposition of Prunus species petals. Petals were put in $1mm^2$ mesh nylon litter bags. For treatment group, one flower litter bag was placed into each pot microcosm ($27{\times}20{\times}8cm^3$) filled with influent water from the artificial pond, whereas control group microcosm contained pond water only. Decomposition time were set differently (4, 8, 12, 16 days) among treatment groups. At the end of experiment, most petals were decomposed and only 32.3% of initial dry weight remained with the decay rate (k) of $7.06{\times}10^{-2}day^{-1}$. $NO_3-N$ concentration of microcosm water decreased sharply from 1.90 mg/L at first to 0.02 mg/L, whereas $NH_4-N$ concentration increased from 0.03 mg/L to 2.85 mg/L continually. $PO_4-P$ concentration was 0.03 mg/L at first and increased to 2.39 mg/L by decomposition. Therefore, available phosphorus seems to have leached with higher rate than nitrogen from the petals litter. Increase about 0.02 mg/L in $PO_4-P$ concentration could be estimated in artificial pond from the calculation on the total quantity of fallen blossoms. This result suggests that available phosphorus from the decomposed Prunus petals could cause eutrophication in the artificial pond.