• Title/Summary/Keyword: Forest disasters

Search Result 163, Processing Time 0.031 seconds

Research on Farmer's Response to the Farm-customized Early Warning Service for Weather Risk Management in Korea (농장맞춤형 기상재해 조기경보서비스의 농업인 반응조사)

  • Soo Jin Kim;Sangtaek Seo;Kyo-Moon Shim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.151-171
    • /
    • 2023
  • This study analyzed farmer's responses to the pilot project in advance of the nationwide expansion of the farm-customized early warning service for weather risk management by conducting a survey among all farmers who received text messages of this service. We analyzed not only the satisfaction of farmers with the early warning service, but also the effectiveness of the service in preventing agrometeorological disasters through cross-tabulation analysis of survey results. More than 330 farmers participated in the survey, and more than 60% of the respondents said that they had prevented or mitigated crop disasters by using the early warning service. The cross-tabulation analysis showed that farmers who perceived the field-specific weather information of the early warning service to be more accurate than the weather forecast were statistically significantly more likely to prevent crop disasters than those who did not. According to our case study, farmers who grew open field fruit crops were particularly sensitive to weather information and confirmed that early warning services, along with disaster prevention facilities, were effective in preparing for freezing and frost injury that had been occurring frequently under the influence of climate change. This study is significant in that it is the first to systematically analyze the effectiveness of the farm-customized early warning service for weather risk management based on extensive surveys. It is expected to contribute to exploring ways to develop the service ahead of the nationwide expansion of the early warning service in the near future.

Precipitation Characteristics in Mountainous Regions During Changma Period in 2023 (2023년 장마기간 동안 산악지역의 강우 특성)

  • Inhye Kim;Keunchang Jang;Byung Oh Yoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.3
    • /
    • pp.161-173
    • /
    • 2024
  • In South Korea, 50-65% of the annual precipitation is concentrated during the summer monsoon season, which is called Changma. In 2023, extreme precipitation was observed during Changma period, and was recorded the highest amount in southern part of Korea. Extreme precipitation in forest region is one of significant factors related to the landslide. Therefore, accurate monitoring and understanding of precipitation patterns are crucial for preventing the landslide disasters in Changma period. This study investigated the precipitation patterns including precipitation intensity, duration, and total amount in mountainous and non-mountainous regions during the Changma period using dataset observed from the Korea Forest Service's Automatic Mountain Meteorology Observation Station (AMOS) and the Korea Meteorological Administration (KMA). Precipitation map produced from the Modified Korean-Parameter elevation Regressions an Independent Slopes Model (MK-PRISM) was also used to verify precipitation patterns in areas affected by landslides in Gyeongsangbuk-do province. The results used from precipitation observations revealed that the total amount of precipitation was greater at elevations such as mountainous regions. In particular, extreme precipitation events such as precipitation duration exceeding 50 hours with amount of over 300 mm and heavy rainfalls of over 30 mm/hr occurred at landslide areas including Mungyeong, Bonghwa, and Yeongju in Gyeongsangbuk-do province. Total amount of precipitation produced by MK-PRISM in these areas during Changma period were more than double compared with 30 years mean values obtained from KMA. The results conducted in this study indicate that it is essential to establish the thresolds considering recent precipitation patterns to effectively prepare and prevent for landslide disasters.

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do (부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석)

  • Kim, Dongwook;Yoo, Jiyoung;Son, Ho Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.145-156
    • /
    • 2021
  • Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.

Development on Prediction Algorithm of Sediment Discharge by Debris Flow for Decision of Location and Scale of the Check Dam (사방댐 위치 및 규모 결정을 위한 토석류 토사유출량 예측 알고리즘 개발)

  • Kim, Kidae;Woo, Choongshik;Lee, Changwoo;Seo, Junpyo;Kang, Minjeng
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.586-593
    • /
    • 2020
  • Purpose: This study aims to develop an algorithm for predicting sediment discharge by debris flow, and develop GIS-based decision support system for optimal arrangement of check dam. Method: The average stream width and flow length were used to predict the cumulative sediment discharge by debris flow. At this time, the amount of slope failure on source area and average flow length were utilized as input factors. Result: The predicted sediment discharge calculated through the algorithm was 1.1 times different on average compared to the actual sediment discharge by debris flow. In addition, the program is an objective indicator that selects the location and size of the check dam, and it can help practitioners make rational decisions. Conclusion: The soil erosion control works are being implemented every year. Therefore, it is expected that the GIS-based decision support system for location and size of the check dam will contribute to the prevention of sediment-related disasters.

Application of Drone Photogrammetry for Current State Analysis of Damage in Forest Damage Areas (드론 사진측량을 이용한 산림훼손지역의 훼손 현황 분석)

  • Lee, Young Seung;Lee, Dong Gook;Yu, Young Geol;Lee, Hyun Jik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.49-58
    • /
    • 2016
  • Applications of drone in various fields have been increasing in recent years. Drone has great potential for forest management. Therefore this paper is using drone for forest damage areas. Forest damage areas is divided into caused by anthropogenic and occurs naturally, the possibility of disasters, such as slope sliding, slope failures and landslides, sediment runoff exists. Therefore, this research was to utilize the drone photogrammetry to perform the damage analysis of forest damage areas. Geometrical treatment processing results in Drone Photogrammetry, the plane position error RMSE was ${\pm}0.034m$, the elevation error RMSE was ${\pm}0.017m$. The plane position error of orthophoto RMSE was ${\pm}0.083m$, the elevation error of digital elevation model RMSE was ${\pm}0.085m$. In addition, It was possible to current state analysis of damage in forest damage areas of airborne LiDAR data of before forest damage and drone photogrammetry data of after forest damage. and application of drone photogrammetry for production base data for restoration and design in forest damage areas.

Characteristics of Heavy Rainfall for Landslide-triggering in 2011 (2011년 집중호우로 인한 산사태 발생특성 분석)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Jin-Hak;Kim, Min-Sik;Kim, Min-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • Rainfall is widely recognized as a major landslide-triggering factor. Most of the latest landslides that occurred in South Korea were caused by short-duration heavy rainfall. However, the relationship between rainfall characteristics and landslide occurrence is poorly understood. To examine the effect of rainfall on landslide occurrence, cumulative rainfall(mm) and rainfall intensity(mm/hr) of serial rain and antecedent rainfall(mm) were analyzed for 18 landslide events that occurred in the southern and central regions of South Korea in June and July 2011. It was found that all of these landslides occurred by heavy rainfall for one or three days, with the rainfall intensity exceeding 30 mm/hr or with a cumulative rainfall of 200 mm. These plotted data are beyond the landslide warning criteria of Korea Forest Service and the critical line of landslide occurrence for Gyeongnam Province. It was also found that the time to landslide occurrence after rainfall start(T) was shortened with the increasing average rainfall intensity(ARI), showing an exponential-decay curve, and this relation can be expressed as "T = $94.569{\cdot}exp$($-0.068{\cdot}ARI$)($R^2$=0.64, p<0.001)". The findings in this study may provide important evidences for the landslide forecasting guidance service of Korea Forest Service as well as essential data for the establishment of non-structural measures such as a warning and evacuation system in the face of sediment disasters.

Biodiversity Conservation & World Natural Heritage in Bangladesh (방글라데시의 생물다양성 보전 및 세계자연유산)

  • Nayna, Omme Kulsum;Lee, Sang Don
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.5
    • /
    • pp.376-384
    • /
    • 2017
  • Bangladesh is a South Asian country with subtropical monsoonal climate between the intersection of the Indo-Himalayan and Indo-Chinese sub-regions, is known as biodiversity hotspot of the Asian region. The country has different types of forest like deciduous forest, evergreen forest, mixed forest, haor (wetlands) and mangrove forest. The natural beauty of the country is increased with the presence of so many rivers, longest sea beach of the world, green plants, critical hilly regions and green agricultural forest widely spread here and there. Sundarbans is the world largest mangrove forest and world natural heritage site declared by UNESCO in 1999 situated in Bangladesh and India. About 62 percent of this mangrove forest is situated in Bangladesh and there are so many plants and animals are found in this forest. To meet the increasing demand of the large population most of the natural ecosystem is now altered, deforestation rate is increased, natural habitat of the species is disturbed. Due to the imbalance of the climate and natural system many of the rare species of the world found this region is now endangered and some of the species are extinct. Directly or indirectly they are benefited from natural resources. At present time community, based ecotourism is also an important source of income for rural poor peoples. To protect the natural resources the government is now developed so many conservation acts and policy as well NGOs are also doing work for the conservation of ecosystem and biodiversity. At present transboundary pollutants and so many natural disasters also destruct the natural resources of Bangladesh.

A Study on Detection and Monitoring in land creeping area by Using the UAV (무인기를 활용한 산지 땅밀림 피해지점 탐지 및 모니터링 방안 연구)

  • Seo, Jun-Pyo;Woo, Choong-Shik;Lee, Chang-Woo;Kim, Dong-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.481-487
    • /
    • 2018
  • This paper proposes a method to detect and monitor the land creeping area using a UAV to analyze the damaged area efficiently. Using a UAV, it was possible to secure the safety of the investigators before the field survey and effectively utilize it to establish an investigation plan because an orthophoto can be used to detect and scale the cracks in a land creeping area. In addition, it was possible to analyze the scale of the crack quantitatively by extracting the topographic information from the orthophoto. The study sites were found to have a total crack area of 1.01 ha, a length of 1.07 km, an average width of 10 m, and a step distance of 1 to 10 m. Periodic UAV measurements can be used to detect displacements on the land creeping area and monitor the direction and scale of crack spread. Therefore, it is expected to be used effectively during recovery planning. Applying the UAV to the land creeping area resulted in the qualitative and quantitative results quickly and easily in dangerous mountainous watersheds. Therefore, it is expected that it will contribute to the development of related industries because of the high availability of a UAV in forest soil sediment disasters, such as landslides, debris flow, and land creeping area.

Factors Affecting Disaster Victims' Quality of Life: The Uljin and Samcheok Forest Fires (산불피해자의 삶의 질에 영향을 미치는 요인: 울진⋅삼척 산불을 중심으로)

  • Hee-Ji Kang;Dong-Hoon Kim;Jae-Ok Ha;Chang-Hyou Kim;Sang-Yoel Han
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.105-116
    • /
    • 2023
  • As forest fires' scale has increased, they have become disasters that destroy not only forests but also property, human psychological balance, and even human lives. As a result, governmental support has become a crucial part of the forest fire restoration process. Quickly restoring victims' quality of life (QOL) from not only an ecological perspective but also from their human perspective has become an important goal. Therefore, through structural equation modeling, this study analyzed effects of government support, post-traumatic stress disorder (PTSD), and resilience on 195 Uljin and Samcheok forest fire victims' QOL. In the final research model, the total standardized effect on QOL of government support to PTSD and resilience was found to have significant effect (0.417). By path, the effect of government support on QOL through resilience was verified as 0.172. Examination of the path between latent variables revealed that resilience had the greatest influence on QOL, and government support had a significant effect, thus confirming that they were the main factors affecting QOL.

Comparison of Terrain Changes in Debris Flow-Damaged Area and Morpho2DH Model Results (토석류 피해지의 지형 변화와 Morpho2DH 모형 결과의 비교 분석)

  • Jong-Seo Lee;Kwang-Youn Lee;Suk-Hee Yoon;Dong-Hyun Kim;Sang Ho Lee;Se-Wook Oh;Dong-Geun Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.3
    • /
    • pp.339-348
    • /
    • 2024
  • Debris flow is a typical type of mountainous sediment disaster that can cause widespread damage to both lives and property, making it essential to understand its behavioral characteristics for effective prevention. In this study, pre- and post-event Light Detection And Ranging(LiDAR) data from the Dosan-ri area in Bonghyeon-myeon, Yeongju-si, Gyeongsangbuk-do, Republic of Korea where debris flows occurred in 2023, were used to calculate the actual affected area and terrain change volume caused by the debris flow. These calculated values were then compared with those derived from the numeric simulation model, Morpho2DH, based on field surveys and laboratory investigation data. Additionally, the model's applicability was assessed by conducting cross-sectional elevation analyses based on the extent of the affected area and comparisons of the results. The findings indicate that the debris flow affected area and terrain change volume estimated by the Morpho2DH model were approximately 152% and 178% higher, respectively, compared to the LiDAR-based results. Pearson correlation analysis of the cross-sectional elevation changes showed a positive correlation, with Pearson Correlation Coefficients(PCC) of at least 0.65