Browse > Article

Characteristics of Heavy Rainfall for Landslide-triggering in 2011  

Kim, Suk-Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
Chun, Kun-Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
Kim, Jin-Hak (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
Kim, Min-Sik (Korean Association of Soil and Water Conservation)
Kim, Min-Seok (Geum River Environmental Research Center)
Publication Information
Journal of Korean Society of Forest Science / v.101, no.1, 2012 , pp. 28-35 More about this Journal
Abstract
Rainfall is widely recognized as a major landslide-triggering factor. Most of the latest landslides that occurred in South Korea were caused by short-duration heavy rainfall. However, the relationship between rainfall characteristics and landslide occurrence is poorly understood. To examine the effect of rainfall on landslide occurrence, cumulative rainfall(mm) and rainfall intensity(mm/hr) of serial rain and antecedent rainfall(mm) were analyzed for 18 landslide events that occurred in the southern and central regions of South Korea in June and July 2011. It was found that all of these landslides occurred by heavy rainfall for one or three days, with the rainfall intensity exceeding 30 mm/hr or with a cumulative rainfall of 200 mm. These plotted data are beyond the landslide warning criteria of Korea Forest Service and the critical line of landslide occurrence for Gyeongnam Province. It was also found that the time to landslide occurrence after rainfall start(T) was shortened with the increasing average rainfall intensity(ARI), showing an exponential-decay curve, and this relation can be expressed as "T = $94.569{\cdot}exp$($-0.068{\cdot}ARI$)($R^2$=0.64, p<0.001)". The findings in this study may provide important evidences for the landslide forecasting guidance service of Korea Forest Service as well as essential data for the establishment of non-structural measures such as a warning and evacuation system in the face of sediment disasters.
Keywords
heavy rainfall; landslide; rainfall intensity; cumulative rainfall; antecedent rainfall; time to occurrence of landslide; warning and evacuation system;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 국립방재연구소. 2005. 사면붕괴 감지 및 관측에 관한 연구(II): 강우량 자료활용 방안을 중심으로. pp. 234.
2 국립방재연구소. 2006. 사면붕괴 감지 및 관측에 관한 연구(III): 국내 표준강우량 산정방안을 중심으로. pp. 124.
3 김경수, 김원영, 채병곤, 조용찬. 2000. 강우에 의한 산사태의 지질공학적 특성: 충청북도 보은지역. 지질공학회지 10(2): 163-174.
4 김경수, 김원영, 채병곤, 송영석, 조용찬. 2005. 강우에 의해 발생된 자연사면 산사태의 지질공학적 분석: 용인. 안성지역을 대상으로. 지질공학회지 15(2): 105-121.
5 김경수, 송영석, 조용찬, 김원영, 정교철. 2006. 지질조건에 따른 강우와 산사태의 특성 분석. 지질공학회지 16(2): 201-214.
6 김기흥, 정혜련, 박재현, 마호섭. 2011. 경남지역 산사태 발생지의 강우 및 지형특성 분석. 한국환경복원기술학회지 14(2): 33-45.
7 김영묵, 정석완. 2000. 대전-충남지역의 강우특성에 의한 산사태에 관한 연구. 대한토목학회논문집 20(4-C): 341-355.
8 김원영, 이사로, 김경수, 채병곤. 1998. 지형특성에 따른 산사태의 유형 및 취약성: 연천-철원지역을 대상으로. 지질공학회지 8(2): 115-130.
9 김원영, 채병곤. 2009. 우리나라 자연사면 산사태지역의 강우, 지질 및 산사태 기하형상 고찰. 지질공학회지 19(3): 331-344.   과학기술학회마을
10 김원영, 채병곤, 김경수, 기원서, 조용찬, 최영섭, 이사로, 이봉주, 김정환, 윤운상. 2000. 산사태 예측 및 방지기술 연구. 한국지질자원연구원 연구보고서. pp. 645.
11 윤찬영, 전경재, 김경석, 김기홍, 이승우. 2010. DB구축 을 통한 강원지역 사면재해 유발강우특성 분석. 한국지반공학회논문집 26(10): 27-38.
12 이영남. 1991. 지반공학과 자연재해(II): 산사태. 대한토질공학회지 7(1): 105-113.
13 최 경. 1982. 산사태 발생원인에 대한 고찰. 산림 200: 65-73.
14 한국지질자원연구원. 2002. 산불피해복구기술개발사업 '2차 산림피해 방지기술 개발'. 과학기술부 연구용역 보고서. pp. 501.
15 한중근. 2001. 부산지역에서의 강우와 산사태의 특성분석. 한국환경복원녹화기술학회지 4(1): 24-31.
16 홍성완, 이명환, 조천환. 1990. 사면안정(VII). 대한토질공학회지 6(1): 65-80.
17 홍원표, 김상규, 김마리아, 김윤원, 한중근. 1990. 강우로 기인되는 우리나라 사면활동의 예측. 대한토질공학회지 6(2): 55-63.   과학기술학회마을
18 國土技術政策總合硏究所. 2010. 國土技術政策總合硏究所資料 No. 570 '台風委員會 土砂災害警戒情報策定プロ ジェクト成果報告書'. pp. 42.
19 川村國夫, 佐野博昭. 1988. 降雨によるのり面崩壞: 石川縣下における崩壞例. 土と基礎 36(5): 61-66.
20 Anderson, S.A. and Sitar, N. 1995. Analysis of rainfallinduced debris flow. Journal of Geotechnical Engineering 121: 544-552.   DOI   ScienceOn
21 Brand, E.W. 1981. Some thoughts on rainfall-induced slope failures. pp. 373-376. In: Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering vol. 3. Stockholm, Sweden.
22 Brand, E.W., Premchitt, J. and Phillipson, H.B. 1984. Relationship between rainfall and landslides in Hong Kong. pp. 377-384. In: Proceedings of 4th International Symposium on Landslides Vol. 1. Toronto, Canada.
23 Caine, N. 1980. The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler 62A: 23-27.
24 Dai, F.C. and Lee, C.F. 2001. Frequency-volume relation and prediction of rainfall-induced landslides. Engineering Geology 59: 253-266.   DOI   ScienceOn
25 Ikeya, H. 1989. Debris flow and its countermeasures in Japan. Bulletin of the International Association of Engineering Geology 40: 15-33.   DOI
26 Yagi, N. and Yatabe, R. 1987. Prediction method of slope failure in sandy soil due to rainfall. pp. 217-220. In: Proceedings of 8th Asian Regional Conference on Soil Mechanics and Foundation Engineering. Kyoto, Japan.
27 Lumb, P. 1975. Slope failures in Hong Kong. Quarterly Journal of Engineering Geology & Hydrogeology 8: 31-65   DOI