• Title/Summary/Keyword: Forest adjacent area

Search Result 94, Processing Time 0.025 seconds

Diurnal Roosts Selection and Home Range Size in the Myotis Aurascens (Chiroptera: Vespertilionidae) Inhabiting a Rural Area (교외지역에 서식하는 Myotis aurascens의 주간휴식지 선택 및 행동권 크기)

  • Chung, Chul Un;Kim, Sung Chul;Han, Sang Hun
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1227-1234
    • /
    • 2013
  • Between July and October 2011, radio-tracking was used to analyze the characteristics of home ranges and day roosts of Myotis aurascens by using 3 individuals (male: 2, female: 1). Bat capturing was conducted at a bridge and a nearby forest in Ulju-gun, Ulsan-si. We attached radio transmitters (0.32 g) to the bats and monitored them by using a radio receiver with a Yagi antenna. Home-range analysis of M. aurascens by using 100% minimum convex polygon (MCP) and 95% MCP showed an average of 106.5 ha and 89.3 ha, respectively, and 50% kernel home range (KHR) showed an average of 8.4 ha. Home range overlap of the 3 bats was observed at the bridge and at nearby water bodies as the core areas, and the size of the home range overlap was 7.3 ha by 100% MCP, 5.9 ha by 95% MCP, and 1.6 ha by 50% KHR. The home range for each bat consisted of the main foraging sites, and the types of foraging sites were similar. M. aurascens-01(M-01) used the bridge and nearby water bodies as the nightly main core areas, M. aurascens-02(M-02) used rice fields and water bodies adjacent to the forest as core areas, and M. aurascens-03(M-03) used water bodies and resident areas as core areas. Although rice fields and resident sites represented the core areas of the home ranges of M-02 and M-03, habitat use was the highest near water bodies as the core area for all the 3 bats. The types of day roosts in this study were a wooden house, canopies of a broad-leaved woodland, and banks of rice fields. The roosts in the wooden house and canopies of the broad-leaved woodland were located within the forest, and the roost in the banks of rice fields was also adjacent to the forest. Our results revealed that the main home range and foraging sites of M. aurascens were located near water bodies as the core area, and forests and places adjacent to the forests were used as day roosts.

Ecological Monitoring on Changes in Microclimate, Vegetation and Soil Properties after 2 Years in Restoration Project Sites Linking the Ridgeline of Baekdudaegan (백두대간 생태축 복원사업 2년 후 산림미기상, 식생 및 토양특성 변화 모니터링)

  • Park, Yeong Dae;Kwon, Tae Ho;Ma, Ho Seop
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.125-136
    • /
    • 2016
  • The Korea Forest Service(KFS) has been initiating restoration activities of ridgeline in damaged and fragmented areas of Baekdudaegan since 2011. Completed project in Ihwaryeong, Yuksimnyeong & Beoljae(2012; 2013) were selected as sites for this study. The changes in microclimate condition, vegetation composition and soil properties between project sites and adjacent stands were compared to evaluate the effect of restoration at early stage(after 2years). Pinus densiflora was planted mainly for these restoration sites, however Robinia pseudoacacia and Alnus sibirica invaded the area two years after the restoration activities. Ihwaryeong showed the most changes in understory vegetation among the study sites. Exotic species, such as Ambrosia artemisiifolia, Oenothera odorata, Erigeron annuus, and Coreopsis tinctoria invaded Ihwaryeong, and the dominance have invaded currently. It resulted from the poor survival rate of trees and high difference in microclimate wherein there's an increased temperature and decreased humidity in both restored sites and adjacent stands. In addition, it is also caused by poor soil chemical property, especially pH and organic matter content due to lack of humus layer and its accumulation, compared to adjacent forest soil in restored sites. Significant difference on chemical soil property was observed between restored sites and adjacent forest but no significant difference was observed after two years of restoration. Ecological monitoring is needed to understand the ecological changes after restoration and to establish a long-term management strategy.

A Comparative Study of Flora and Vegetation Change before and after Forest Road Construction in the Research Site of Minjujisan (임도개설 전·후 식물상 및 식생변화 비교 연구 - 민주지산을 중심으로 -)

  • Han, Seung Woo;Kweon, Hyeong Keun;Lee, Sang Myong;Kim, Hyoun Sook;Lee, Joon Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.4
    • /
    • pp.392-412
    • /
    • 2018
  • This study was conducted from 2012, which was a year before forest road construction in Minjujisan, to 2015 to verify effects on flora and vegetation change annually before and after the construction, and to provide strategies to examine and manage flora changes. The plant communities in the investigated area around the forest road is separated by the slopes into Quercus mongolica community is on the northwestern slope and Quercus variabilis and Larix kaempferi communities is on the southwestern slope. The annual investigation of flora change before and after the construction showed that there were 209 taxa that had 71 families, 153 genera, 178 species, 27 varieties, and 4 forma in 2015 while there were 66 taxa that had 44 families, 59 genera, 51 species, 13 varieties, and 2 forma in 2012 before the construction, indicating an increase of 143 texa before and after the construction. The investigation of the slope area adjacent to the forest road constructed in 2013, in particular, showed increasing coverage and taxa each year after the construction. This was caused by significantly increased light transmittance after the construction. The investigation in 2015 showed increased coverage of herbaceous layer the year after development of the forest road and the remarkable increase of the coverage of shrub layer in 2015. Further, the coverage on the slope adjacent to the forest road increased more in 2015 than in 2013 and 2014. Therefore, we expect supplementary studies will help to generate a detail manual on flora and vegetation change before and after forest road construction.

Optimal Landing Location and Skid Trail Network Selection in Timber Harvesting Area (목재수확작업지의 적정 집재장 선정 및 작업로 배치)

  • Ji, Byoung-Yun;Oh, Jae-Heun;Park, Sang-Jun;Hwang, Jin-Sung;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Forest in the our country is in the age that needs positive operation in order to foster economical forest. Multiple operations for making valuable forest should be conducted steadily and timely from afforestation to harvesting. In order to execute these kinds of forest operations, the construction of skid trail network that can be effectively used as a pathway for forestry machine and working space is necessary. To investigate facility effect of skid trail network, we executed the location of skid trail network through centroid method by GIS for 50ha of harvesting workplace in mechanized model forest located in Hongcheon, Gangwon Province. As a result of this research, skid trail density in this area changed from 79m/ha with current method to 42m/ha with improved method. It appeared that skid trail density with improved method is nearly half of current method even though the cutting area is the same as the current cutting area. Also, skidding distance changed from 117m with current method to 57m with improved method. It appears that skidding distance with improved method is nearly half of current method even though cutting area was enlarged in adjacent tending cutting area.

GeoAI-Based Forest Fire Susceptibility Assessment with Integration of Forest and Soil Digital Map Data

  • Kounghoon Nam;Jong-Tae Kim;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.107-115
    • /
    • 2024
  • This study assesses forest fire susceptibility in Gangwon-do, South Korea, which hosts the largest forested area in the nation and constitutes ~21% of the country's forested land. With 81% of its terrain forested, Gangwon-do is particularly susceptible to wildfires, as evidenced by the fact that seven out of the ten most extensive wildfires in Korea have occurred in this region, with significant ecological and economic implications. Here, we analyze 480 historical wildfire occurrences in Gangwon-do between 2003 and 2019 using 17 predictor variables of wildfire occurrence. We utilized three machine learning algorithms—random forest, logistic regression, and support vector machine—to construct wildfire susceptibility prediction models and identify the best-performing model for Gangwon-do. Forest and soil map data were integrated as important indicators of wildfire susceptibility and enhanced the precision of the three models in identifying areas at high risk of wildfires. Of the three models examined, the random forest model showed the best predictive performance, with an area-under-the-curve value of 0.936. The findings of this study, especially the maps generated by the models, are expected to offer important guidance to local governments in formulating effective management and conservation strategies. These strategies aim to ensure the sustainable preservation of forest resources and to enhance the well-being of communities situated in areas adjacent to forests. Furthermore, the outcomes of this study are anticipated to contribute to the safeguarding of forest resources and biodiversity and to the development of comprehensive plans for forest resource protection, biodiversity conservation, and environmental management.

Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation(I) - Acidification of Precipitation and Transformed Vegetation Index(TVI) - (산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(I) - 강우(降雨)의 산성화도(酸性化度)와 식생(植生) 활력도(活力度)(TVI)를 중심(中心)으로 -)

  • Lee, Soo Wook;Chang, Kwan Soon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.460-472
    • /
    • 1994
  • This study has been conducted to give some ideas for reasonable ecological management of Taejon city and its adjacent forest ecosystem against the effect of acid rain. Rain monitoring points to analyse its components represented 1 point in industrial area, 4 points in commercial area, 4 points in residential area, and 5 points in suburban area and forest survey was done in 7 forest sites adjacent to rain monitoring points. Transformed vegetation index(TVI) based on Landsat TM data was analysed for forest area. Taejon area was seriously contaminated by air pollutants and average concentration of anions in precipitation were 20.16mg/l for $SO_4{^{2-}}$, 3.65mg/l for $NO_3{^-}$, and 3.09mg/l for $Cl^-$. Anion in precipitation were $1.09mg/m^2/month$ for $SO_4{^{2-}}$, $0.23mg/m^2/month$ for $NO_3{^-}$, and $0.20mg/m^2/month$ for $Cl^-$. Cation in precipitation were $0.14mg/m^2/month$ for $Ca^{2+}$, $0.10mg/m^2/month$ for $NH_4{^+}$, $0.08mg/m^2/month$ for $Na^+$, $0.07mg/m^2/month$ for $K^+$, and $0.08mg/m^2/month$ for $Mg^{2+}$. The region with the highest concentration of $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$ in rain was industrial area. $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$ concentrations in industrial area were 43.08, 3.88, and 3.64ppm, respectively. Forest soil showed strongly acidic ranging pH4.16-4.94. Transformed vegetation index(TVI) were 3.11 in Dangsan, 4.00 in Kyechoksan, 4.13 in Bomunsan, 4.18 in Kabhasan, 3.34 in Bongsan, 4.13 in Sikchangsan, and 4.20 in Seongchisan. Dangsan forest located near in industrial area showed the lowest TVI.

  • PDF

Changes of Distribution Coefficients of Cu, Cr, and As in Different Soil Matrix in a Laboratory Scale

  • Kang, Sung-Mo;Ra, Jong-Bum;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.137-140
    • /
    • 2009
  • Chromated copper arsenate (CCA), a long history of successful preservative, have raised environmental concerns. Adsorption characteristics of domestic soils for chromium, copper, and arsenic were assessed by measuring distribution coefficient ($K_d$) values of these metal components in a laboratory scale. The results revealed that $K_d$ values were higher in chromium, followed by arsenic and copper in soil matrix. Different soil matrixes resulted in varying mobilities of CCA components. The values of $K_d$ for all three metals increased with organic matter contents. The results suggest that the mobility of metal components may be very limited to the surface area adjacent to CCA-treated wood due to their fairly large distribution coefficient ($K_d$). However, the metal components would be persistent and accumulated in the soil, resulting in high chemical concentration in service area of treated wood.

A Study on Soil Environment in Highway Cutting Slope and Adjacent Natural Vegetation Area (고속도로 절토 비탈면과 인접 자연식생지의 토양 환경 비교 분석)

  • Park, Gwan-Soo;Jeon, Gi-Seong;Song, Ho-Kyung;Kim, Nam-Choon;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • This study was carried out to estimate the physical and chemical soil characteristics in highway cutting slope areas. The soil was sampled in cutting area and natural vegetation area that was located in the upper areas of the highway cutting slope. The average total soil depth, bulk density, and soil hardness were bad in the highway cutting slope sites. The sandy loam was the most soil texture in the study area. The concentration of soil organic matter and nitrogen were very low in all highway cutting areas. The concentration of exchangeable cations was similar between the highway cutting slope and the natural vegetation sites in each highway. The soil pH was higher in highway cutting slope areas than in natural vegetation sites. In conclusion, chemical and physical properties of soil were bad in the cutting slope than in the natural vegetation area because of the loss of soil by cutting of slope area and less organic matter input by less vegetation in the highway cutting slope area. We should employ possible method to reduce the loss of soil, and compost and fertilization treatment could help to increase soil nutrient content in the cutting slope area.

An Integrated Watershed Environmental Assessment and Classification of the Mid-Nakdong River Region (낙동강 중류 지역의 통합적 유역환경평가 및 유형화)

  • Jung, Sung-Gwan;Park, Kyung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.3
    • /
    • pp.137-151
    • /
    • 2004
  • Many of today's environmental problems are regional in scope and their effects overlap and interact. The purpose of this paper is to developed a simple method for an integrated assessment of environmental conditions across the Mid-Nakdong River Region, by combining data on land use, impervious cover, roads, streams, riparian areas, forest patches, population, pollutant loadings, soil erosion and topography. A cluster analysis was used to identify groups of sub-watersheds with similar environmental characteristics. The mean value for each group was used to find watershed that may be more vulnerable to future environmental degradation. Watersheds in cluster I and II had high amount of forest, but the amount of riparian vegetation was low. Watersheds in cluster III, which located in the middle Geumho River and the main course of Nakdong River, had a greater proportion of their agriculture, a greater proportion of agriculture on steep slopes, and less forest adjacent to streams. Watersheds in cluster IV and V were in the most urbanized areas of the region. The principal adverse impacts for watersheds in this group were high scores for urban area, impervious cover, pollutant loadings, population density, forest fragmentation, and low amounts of forest and riparian forest cover. Notwithstanding the exploratory nature of cluster analysis, it appears to be a useful tool for grouping watersheds with similar environmental characteristics.

Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea

  • Jung, Song Hie;Lim, Chi Hong;Kim, A Reum;Woo, Dong Min;Kwon, Hye Jin;Cho, Yong Chan;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.10
    • /
    • pp.290-301
    • /
    • 2017
  • Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in $Mg^{2+}$ content and total nitrogen, $K^+$, $Ca^{2+}$ contents, canopy openness, light intensity, air humidity, $Na^+$ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.