• Title/Summary/Keyword: Fores fire

Search Result 2, Processing Time 0.015 seconds

The Effect of Forest Fire on Temperature of Overhead Conductor (산불이 가공송전선의 온도에 미치는 영향)

  • Kim, Byung-Gol;Kim, Shang-Shu;Jun, Wan-Gi;Han, Se-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.523-524
    • /
    • 2007
  • Forest fire can give a serious damage to overhead conductors. Therefore, the definite understanding about aging behavior of burned conductor is very important in maintaining the transmission line safely. It is sure that the temperature of conductor itself will be affected by the distance apart from flame. From this point of a view, we monitored the conductor's temperature with distance from flame. As a result, the conductor's temperature decreased as the flame goes away from the conductor gradually. The temperature of conductor was reached up to 55~65% level of its atmospheric temperature. The detailed results will be presented in the text.

  • PDF

Development of Fire Weather Index Model in Inaccessible Areas using MOD14 Fire Product and 5km-resolution Meteorological Data (MODIS Fire Spot 정보와 5km 기상 재분석 자료를 활용한 접근불능지역의 산불기상위험지수 산출 모형 개발)

  • WON, Myoung-Soo;JANG, Keun-Chang;YOON, Suk-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.189-204
    • /
    • 2018
  • This study has developed a forest fire occurrence probability model for inaccessible areas such as North Korea and Demilitarized Zone and we have developed a real-time forest fire danger rating system that can be used in fire-related works. There are limitations on the research that it is impossible to conduct site investigation for data acquisition and verification for forest fire weather index model and system development. To solve this problem, we estimated the fire spots in the areas where access is impossible by using MODIS satellite data with scientific basis. Using the past meteorological reanalysis data(5㎞ resolution) produced by the Korea Meteorological Administration(KMA) on the extracted fires, the meteorological characteristics of the fires were extracted and made database. The meteorological factors extracted from the forest fire ignition points in the inaccessible areas are statistically correlated with the forest fire occurrence and the weather factors and the logistic regression model that can estimate the forest fires occurrence(fires 1 and non-fores 0). And used to calculate the forest fire weather index(FWI). The results of the statistical analysis show that the logistic models(p<0.01) strongly depends on maximum temperature, minimum relative humidity, effective humidity and average wind speed. The logistic regression model constructed in this study showed a relatively high accuracy of 66%. These findings may be beneficial to the policy makers in Republic of Korea(ROK) and Democratic People's Republic of Korea(DPRK) for the prevention of forest fires.