• Title/Summary/Keyword: Forecasting system

Search Result 1,537, Processing Time 0.031 seconds

A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju (제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구)

  • Lee, Young-Mi;Yoo, Myoung-Suk;Choi, Hong-Seok;Kim, Yong-Jun;Seo, Young-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model

  • Aggarwal, Sanjeev Kumar;Saini, Lalit Mohan;Kumar, Ashwani
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.639-650
    • /
    • 2008
  • Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.

A Case Study of Implementation for Cash Flow Forecasting System in a Construction Company (건설회사 현금흐름예측시스템 구축방법에 대한 사례연구)

  • Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.391-397
    • /
    • 2009
  • This research introduces the implementation for cash flow forecasting system in construction company through a case study. The implemented system shows how to develop overall corporate-level and project-level cash flow forecasting model based on a real business process in construction company. It takes 1 year to implement system. The study proposes the way of system design, process of system design, and considerations of implementation in step by step. Moreover, it shows main screen, limitation and reliability of the system. The proposed model is validated accurate, flexible and simple as a result of comparing actual data to forecasting data for 2 years. This system is easy to approach the employee who don't have any financial knowledge. This research is expected to assist to implement system of cash flow forecasting in construction company.

Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System (신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • The purpose of this study is to develop a real-time forecasting model in order to predict the flood runoff which has the nature of non-linearity and to verify applicability of neural network model for flood warning system. Developed model based on neural network, NRDFM(Neural River Discharge-Stage Forecasting Model) is applied to predict the flood discharge on Waekwann and Jindong stations in Nakdong river basin. As a result of flood forecasting on these two stations, it can be concluded that NRDFM-II is the best predictive model for real-time operation. In addition, the results of forecasting used on NRDFM-I and NRDFM-II model are not bad and these models showed sufficient probability for real-time flood forecasting. Consequently, it is expected that NRDFM in this study can be utilized as suitable model for real-time flood warning system and this model can perform flood control and management efficiently.

The Study on the Human Resource Forecasting Model Development for Electric Power Industry (전력산업 인력수급 예측모형 개발 연구)

  • Lee, Yong-Suk;Lee, Geun-Joon;Kwak, Sang-Man
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

Improvement of Mid/Long-Term ESP Scheme Using Probabilistic Weather Forecasting (확률기상예보를 이용한 중장기 ESP기법 개선)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.843-851
    • /
    • 2011
  • In hydrology, it is appropriate to use probabilistic method for forecasting mid/long term streamflow due to the uncertainty of input data. Through this study, it is expanded mid/long term forecasting system more effectively adding priory process function based on PDF-ratio method to the RRFS-ESP system for Guem River Basin. For implementing this purpose, weight is estimated using probabilistic weather forecasting information from KMA. Based on these results, ESP probability is updated per scenario. Through the estimated result per method, the average forecast score using ESP method is higher than that of naive forecasting and it confirmed that ESP method results in appropriate score for RRFS-ESP system. It is also shown that the score of ESP method applying revised inflow scenario using probabilistic weather forecasting is higher than that of ESP method. As a results, it will be improved the accuracy of forecasting using probabilistic weather forecasting.

Comparative Analysis of Forecasting Accuracy and Model Performance for Development of Coastal Wave Forecasting System Based on Unstructured Grid (비정형격자 기반 국지연안 파랑예측시스템 구축을 위한 예측정확도 및 모델성능 비교분석)

  • Min, Roh;Sang Myeong, Oh;Pil-Hun, Chang;Hyun-Suk, Kang;Hyung Suk, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.188-197
    • /
    • 2022
  • We develop a coastal wave forecasting system by using the unstructured grid based on sea wind data of Global Data Assimilation and Prediction System. The verification is performed to examine the performance and accuracy of the wave model. Since the conventional grid has limited wave forecasting on complex coastlines and bathymetry, the unstructured grid system is applied for precise numerical simulation, and applicability for operational support is evaluated. Both grid systems show similar prediction trends in offshore and coastal areas, and the difference in prediction errors according to the grid system is not large. In addition, the applicability of the operational wave forecasting system is confirmed by dramatically reducing the model execution time of the unstructured grid under the same conditions.

Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network (Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측)

  • Heo, Chang-Hwan;Lim, Kee-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

Forecasting Ozone Concentration with Decision Support System (의사 결정 구조에 의한 오존 농도예측)

  • 김재용;김성신;이종범;김신도;김용국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.19-22
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

Study on a Probabilistic Load Forecasting Formula and Its Algorithm (전력부하의 확률가정적 최적예상식의 유도 및 전산프로그래밍에 관한 연구)

  • Myoung Sam Ko
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.28-32
    • /
    • 1973
  • System modeling is applied in developing a probabilistic linear estimator for the load of an electric power system for the purpose of short term load forecasting. The model assumer that the load in given by the suns of a periodic discrete time serier with a period of 24 hour and a residual term such that the output of a discrete time dynamical linear system driven by a white random process and a deterministic input. And also we have established the main forecasting algorithms, which are essemtally the Kalman filter-predictor equations.

  • PDF