• Title/Summary/Keyword: Forecasting methods

Search Result 683, Processing Time 0.03 seconds

24-Hour Load Forecasting For Anomalous Weather Days Using Hourly Temperature (시간별 기온을 이용한 예외 기상일의 24시간 평일 전력수요패턴 예측)

  • Kang, Dong-Ho;Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1144-1150
    • /
    • 2016
  • Short-term load forecasting is essential to the electricity pricing and stable power system operations. The conventional weekday 24-hour load forecasting algorithms consider the temperature model to forecast maximum load and minimum load. But 24-hour load pattern forecasting models do not consider temperature effects, because hourly temperature forecasts were not present until the latest date. Recently, 3 hour temperature forecast is announced, therefore hourly temperature forecasts can be produced by mathematical techniques such as various interpolation methods. In this paper, a new 24-hour load pattern forecasting method is proposed by using similar day search considering the hourly temperature. The proposed method searches similar day input data based on the anomalous weather features such as continuous temperature drop or rise, which can enhance 24-hour load pattern forecasting performance, because it uses the past days having similar hourly temperature features as input data. In order to verify the effectiveness of the proposed method, it was applied to the case study. The case study results show high accuracy of 24-hour load pattern forecasting.

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.

Influence of Fashion Trend Forecasting on Korean Fashion System (국내 패션 시스템에서 패션 트렌드 정보 예측의 영향력)

  • Dawn Jung;Sung Eun Kim;Jisoo Ha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.963-986
    • /
    • 2022
  • This article surveys the fashion forecasting industry in Korean domestic markets. With the rise of new media and devices with high technology, the paradigm of fashion trends forecasting systems has dramatically changed. New perspectives of trend forecasting are required to understand the trend flow and consumer behavior of the MZ generation. The research questions are as follows: 1) Major trend forecasting companies studied the development of their strategies and new forecasting methods. 2) The consumers' needs in the domestic market were analyzed. The influence of the trend companies' forecasting on the market was investigated. The results are as follows: 1) International trend forecasting significantly affected the domestic market. The concordance rate between consumers' online searches about fashion trends was approximately 70.14%. The match rate by category is as follows: The highest rate, 85.06% is from pattern and print, color is 83.92%, the item is 80.39%, and style is 54.32%. 2) Specialized information such as the Pantone color chart is being widely consumed, leading to a trend among the masses. 3) The Korean-specific socio-cultural background has an impact on domestic trends.

A Method for Forecasting Demand of High Touch Product Using Matrix Analysis of Target Populations and Product Functions (Target Population과 Product Function의 Matrix 분석을 이용한 High Touch 신제품의 판매예측 방법)

  • Park, Won-Hui;Kim, Dae-Gap;Kim, Ki-Sun;Lee, Sang-Won;Lee, Myun-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • Demand forecasting methods for a consumer product such as TV or refrigerator are widely known. However, sales forecast for a brand new product cannot be estimated using conventional forecasting methods. This study proposes a five-step procedure in forecasting a newly developed product. Step one defines functions in a High Touch product in order to estimate relative attraction of the product to consumer group. In step two, for a comparison purpose, a compatible product that is successfully penetrated into market is selected. Step three breaks a target population into many segments based on demography. Step four calculates relative attraction between the High Touch product and the compatible product. Finally, market penetration rate of the High Touch product is estimated using a bell-shaped diffusion curve of the compatible product. The process offers a method to estimate potential demand and growth pattern of the new High Touch product.

A Study on the Forecasting of Container Volume using Neural Network (신경망을 이용한 컨테이너 물동량 예측에 관한 연구)

  • Park, Sung-Young;Lee, Chul-Young
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.183-188
    • /
    • 2002
  • The forecast of a container traffic has been very important for port and development. Generally, Statistic methods, such as moving average method, exponential smoothing, and regression analysis have been much used for traffic forecasting. But, considering various factors related to the port affect the forecasting of container volume, neural network of parallel processing system can be effective to forecast container volume based on various factors. This study discusses the forecasting of volume by using the neural, network with back propagation learning algorithm. Affected factors are selected based on impact vector on neural network, and these selected factors are used to forecast container volume. The proposed the forecasting algorithm using neural network was compared to the statistic methods.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

Price Monitoring Automation with Marketing Forecasting Methods

  • Oksana Penkova;Oleksandr Zakharchuk;Ivan Blahun;Alina Berher;Veronika Nechytailo;Andrii Kharenko
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.37-46
    • /
    • 2023
  • The main aim of the article is to solve the problem of automating price monitoring using marketing forecasting methods and Excel functionality under martial law. The study used the method of algorithms, trend analysis, correlation and regression analysis, ANOVA, extrapolation, index method, etc. The importance of monitoring consumer price developments in market pricing at the macro and micro levels is proved. The introduction of a Dummy variable to account for the influence of martial law in market pricing is proposed, both in linear multiple regression modelling and in forecasting the components of the Consumer Price Index. Experimentally, the high reliability of forecasting based on a five-factor linear regression model with a Dummy variable was proved in comparison with a linear trend equation and a four-factor linear regression model. Pessimistic, realistic and optimistic scenarios were developed for forecasting the Consumer Price Index for the situation of the end of the Russian-Ukrainian war until the end of 2023 and separately until the end of 2024.

Developing Optimal Demand Forecasting Models for a Very Short Shelf-Life Item: A Case of Perishable Products in Online's Retail Business

  • Wiwat Premrudikul;Songwut Ahmornahnukul;Akkaranan Pongsathornwiwat
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Demand forecasting is a crucial task for an online retail where has to manage daily fresh foods effectively. Failing in forecasting results loss of profitability because of incompetent inventory management. This study investigated the optimal performance of different forecasting models for a very short shelf-life product. Demand data of 13 perishable items with aging of 210 days were used for analysis. Our comparison results of four methods: Trivial Identity, Seasonal Naïve, Feed-Forward and Autoregressive Recurrent Neural Networks (DeepAR) reveals that DeepAR outperforms with the lowest MAPE. This study also suggests the managerial implications by employing coefficient of variation (CV) as demand variation indicators. Three classes: Low, Medium and High variation are introduced for classify 13 products into groups. Our analysis found that DeepAR is suitable for medium and high variations, while the low group can use any methods. With this approach, the case can gain benefit of better fill-rate performance.

Traffic Demand Forecasting Method for LCCA of Pavement Section (도로포장의 생애주기비용 분석을 위한 장기 교통수요 추정)

  • Do, Myungsik;Kim, Yoonsik;Lee, Sang Hyuk;Han, Daeseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2057-2067
    • /
    • 2013
  • Traffic demand forecasting for pavement management in the present can be estimated using the past trends or subjective judgement of experts instead of objective methods. Also future road plans and local development plans of a target region, for example new road constructions and detour plans cannot be considered for the estimate of future traffic demands. This study, which is the fundamental research for developing objective and accurate decision-making support system of maintenance management for the national highway, proposed the methodology to predict future traffic demands according to 4-step traffic forecasting method using EMME in order to examine significance of future traffic demands affecting pavement deterioration trends and compare existing traffic demand forecasting methods. For the case study, this study conducted the comparison of traffic demand forecasting methods targeting Daejeon Regional Construction and Management Administration. Therefore, this study figured out that the differences of traffic demands and the level of agent costs as well as user costs between existing traffic demand forecasting methods and proposed traffic demand forecasting method with considering future road plans and local development plan.

Forecasting Monthly Runoff Using Ensemble Streamflow Prediction (앙상블 예측기법을 통한 유역 월유출 전망)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Hwang, Man-Ha;Maeng, Seung-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • In this study the validities of runoff prediction methods are reviewed around ESP (Ensemble Streamflow Prediction) techniques. The improvements of runoff predictions on Yongdam river basin are evaluated by the comparison of different prediction methods including ESP incorporated with qualitative meteorological outlooks provided by meteorological agency as well as the runoff forecasting based on the analysis of the historical rainfall scenarios. As a result it is assessed that runoff predictions with ESP may give rise to more accurate results than the ordinary historical average runoffs. In deed the latter gave the mean of yearly absolute error as to be 60.86 MCM while the errors of the former ones amounted to 44.12 MCM (ESP) and 42.83 MCM (ESP incorporated with qualitative meteorological outlooks) respectively. In addition it is confirmed that ESP incorporated with qualitative meteorological outlooks could improve the accuracy of the results more and more. Especially the degree of improvement of ESP with meteorological outlooks shows rising by 10.8% in flood season and 8% in drought season. Therefore the methods of runoff predictions with ESP can be further used as the basic forecasting information tool for the purpose of the effective watershed management.