특정 분야의 특허출원수는 기술의 수명주기 및 산업의 활성화 정도와 밀접한 관계를 가지고 있다. 따라서 사전에 사업을 준비하는 기업들과 미래 유망 기술을 초기 단계에서 선발하여 투자하고자 하는 정부 기관들은 미래의 특허 출원수 예측에 대해 큰 관심을 가지고 있다. 본 논문에서는 시계열 데이터에 적합한 RNN의 기법 중 하나인 양방향 LSTM 기법을 이용하여 기존 예측 방법들보다 정확도를 높이는 방법을 제안한다. 5개 분야의 대한민국 특허 출원 데이터에 대해서 제안된 방법은 기존에 사용되던 확산 모델 중 하나인 Bass 모델과 비교하여 평균 절대 백분율 오차(MAPE)의 값이 약 16퍼센트 향상된 결과를 보여준다.
In this paper, a system dynamics model for explaining the application, grant and maintenance of patents is provided. Existing literatures regarding the patent application system are mostly econometric approaches that consider only economic variables such as GDP and R&D. The model in this paper includes patent variables such as disputes as well as economic variables. Moreover, we show that the model can be used in not only a quantitative prediction but also policy experiment. The results of the policy experiment shows that strengthening protection of patents tend to increase the propensity to patent more than R&D investment.
Kim, Daejung;Jeong, Joong-Hyeon;Ryu, Hokyoung;Kim, Jieun
한국컴퓨터정보학회논문지
/
제24권1호
/
pp.25-32
/
2019
With the rapid development of artificial intelligence technology, the patenting activities related to the fields of AI is increasing worldwide. In particular, a share of patent filed in China has exploded in recent years and overtakes the numbers in the US. In the present study, we focus our attention on the patenting activity of China and the US. We analyzed 6,281 and 13,664 patent applications in the US and China respectively between 2008 and 2018, and belonging to the "G06F(Electric Digital Data Processing)", "G06N(Computer Systems Based on Specific Computational Models)", "H04L(Transmission of Digital Information)" and nine more relevant technological classes, as indicated by the International Patent Classification(IPC). Our analysis contributes to: first, the understanding of patent application trends from foreign countries filed in the US and China, 2) patent application status by applicants category such as companies, universities and individuals, 3) the development direction and forecasting vacant technology of AI according to main IPC code. Through the analysis of this paper, we can suggest some implications for patent research related to artificial intelligence in Korea. Plus, by analyzing the most recent patent data, we can provide important information for future artificial intelligence technology research.
빅 데이터는 여러 분야에서 다양한 개념으로 사용된다. 예를 들어, 컴퓨터학과 사회학에서 빅 데이터에 대한 접근방법에 차이가 있지만, 데이터분석 관점에서는 공통적인 부분을 갖는다. 즉, 공학이든 사회과학이든 빅 데이터에 대한 분석은 반드시 필요하다. 통계학과 기계학습은 빅 데이터의 분석을 위한 대표적인 분석도구이다. 본 논문에서는 빅 데이터분석을 위한 학습도구에 대하여 알아보고 검색된 빅 데이터 원천에서부터 분석을 거쳐 최종적으로 분석결과를 사용하는 전체과정에 대하여 효율적인 빅 데이터학습 절차에 대하여 제안한다. 특히, 대표적인 빅 데이터 구조를 갖고 있는 특허문서에 대하여 빅데이터학습을 적용하여 특허분석을 수행하고 이 결과를 기술예측에 적용하는 방법에 대하여 연구한다. 제안방법에 대한 실제적용을 위하여 전 세계 특허청으로부터 빅 데이터 관련 특허문서를 검색하여 텍스트 마이닝의 전처리와 통계학의 다중선형회귀분석을 이용한 구체적인 빅 데이터학습에 대한 사례연구를 수행하였다.
연구개발은 더욱 다양한 형태를 보이고, 결과물도 급격한 증가 추세에 있으며 기술경쟁은 점차 심화되고 있다. 본 연구는 빠르게 변하고 있는 연구개발의 향상을 위한 필요성과 연구생산성 도출을 위한 대안을 제시하는데 목적이 있다. 이를 위해 특허와 논문분석이라는 두 가지 기법을 활용하여 정삼투막 기술 분석을 하였다. 지금까지 출원된 기술에 대한 객관적이고 광범위한 정보를 포함하고 있는 특허데이터를 정량적으로 분석하여 정삼투막에 대한 기술적 예측에 필요한 특허분석 방법을 제안한다. 1990~2011년 동안의 한국, 미국, 일본, 중국 및 유럽에서 출원된 특허에 대하여 출원국별, 출원인별, 연도별, 세부기술 분야로 분류하여 비교함으로써 기술개발 현황을 분석하였다.
최근 몇 년 동안 언어 모델 기반의 생성형 인공지능 기술은 눈에 띄게 발전하고 있다. 특히, 요약, 코드 작성과 같은 다양한 분야에서 활용 가능성이 증가하고 있어 큰 관심을 받고 있다. 이러한 관심의 반영으로, 생성형 인공지능 관련 특허 출원이 급격히 증가하는 추세를 보인다. 이러한 동향을 파악하고 이에 따른 전략을 수립하기 위해 미래 예측이 핵심적이다. 예측을 통해 해당 기술 분야의 미래 동향을 정확히 파악하여 더 효과적인 전략을 수립할 수 있다. 본 논문에서는 언어 모델 기반 생성형 인공지능 발전 방향을 확인하기 위해 현재까지 출원된 특허들을 분석하였다. 특히, 각 국가에서의 연구 및 발명 활동을 깊게 살펴보았으며, 연도별 및 세부 기술별 출원 동향을 중점적으로 분석하였다. 이러한 분석을 통해 핵심 특허들이 포함하고 있는 세부 기술을 이해하고, 향후 생성형 인공지능의 기술 개발 트렌드를 예측해 보고자 하였다.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1273-1284
/
2016
본 연구에서는 기계 학습 분야의 특허를 수집하여 키워드 네트워크를 구축하고 클릭 분석을 실시하였다. 먼저 텍스트 마이닝 기법을 적용하여 핵심 키워드들을 선정한 다음, 이 키워드를 기반으로 키워드 네트워크를 구축하였다. 다음으로 네트워크 구조 분석, 중요 키워드 분석 및 클릭 분석을 시행하여 2005년도와 2015년도에 출원된 기계 학습 특허의 동향을 파악하였을 뿐만 아니라 양해년도의 분석 결과를 통해 특허 경향을 파악하였다. 분석 결과 기계 학습 특허의 키워드 네트워크는 밀도와 군집 계수가 낮은 것으로 드러났으며 기계 학습 기법 자체에 대한 특허보다는 다양한 응용 영역에서 기계학습을 적용한 특허들이 다수이기 때문으로 판단된다. 클릭 분석 결과 2005년도 클릭 분석에 의해 발견된 주제는 뉴스메이커 검증, 상품 소비 예측, 바이러스 공격 예방, 바이오마커, 그리고 워크플로우 관리였으며, 2015년도 기계 학습 특허 주제는 디지털 이미지 편집, 직불카드, 수신자 인라이닝 시스템, 유방 촬영 시스템, 재고 관리 시스템, 이미지 편집 시스템, 비행기 티켓 가격 예측, 그리고 문제 예측 시스템으로 나타났다. 2005년도에 비하여 2015년도의 근접 중앙성은 낮아지고 매개 중심성은 높아진 것으로 보아 최근의 특허 경향은 보다 다양한 분야에서 출원되고 있으며 이들 간의 연결이 활발해지고 있음을 알 수 있다. 클릭 분석은 클릭을 형성하는 키워드 집합을 해석하여 주제를 파악하는데 활용될 수 있을 뿐만 아니라 추출된 공유 멤버쉽 키워드 집합은 특허 검색 시스템과 같이 키워드 검색 기반의 시스템에서 검색 키워드로 활용될 수 있을 것으로 기대된다.
글로벌시장경쟁에서 국가와 기업은 미래 핵심유망기술에 진입을 시도하고 선점하여 기업의 이윤을 극대화하고자 기술예측 활동을 적극 전개하고 있다. 본 논문에서는 기존기술이 적용된 제품이 유망 신기술로 대체되어 시장을 지배하는데 소요되는 시장대체시간을 예측하고자 특허출원동향에 기반을 둔 성장모형을 제안한다. 유망대체기술 출현을 예측하기 위해 Bhargava가 일반화한 Fisher-Pry 모형은 최초 Fisher-Pry 모형에 비해 예측결과가 비교적 만족스러웠지만, 변수 문제로 대체율 거동을 제대로 예측하기가 쉽지 않았다. 이를 해결하기 위해 3개의 변수를 갖는 지수함수를 3개의 변수를 갖는 2차 방정식으로 수정하였고, 이 수정모형은 대체율 거동에 잘 부합되는 함수 거동을 보여주었다. 광저장장치기술에 대한 대체시간 예측 검증을 위하여 광저장장치의 특허동향분석을 통한 2차 방정식 형태의 Fisher-Pry 수정모형을 적용한 결과 만족스러운 검증결과를 얻을 수 있었다. 비록 1차 방정식 보다는 결정할 변수가 하나가 늘어 다소 복잡하여 졌으나, 대체율 거동 예측 정확도가 높아졌다. 이는 시장대체시간 예측 분석에 있어 종래 방법론에 비해 소요되는 인적, 시간적, 비용적인 측면에서 많은 효율성을 제고할 수 있게 되었다. 중소기업 및 개인 연구자들도 본 모형을 적용하여 유망대체기술에 대한 시장대체시간을 쉽게 예측할 수 있도록 간편성과 사용성을 높여 활용도가 높을 것으로 기대된다.
데이터베이스로부터 지식을 발견하고 이를 연구기획자, 정책의사결정자들이 활용하는 움직임이 전세계적으로 활발해지고 있다. 이러한 연구분야 중 대표적인 것이 계량정보학이고 이 분야를 지원하기 위해서 주로 선진국을 중심으로 분석시스템이 개발되고 있다. 그러나 외국의 분석시스템은 실제 수요자의 요구를 충분히 반영하지 못하고 있고, 고가이면서 한글이 지원되지 않아 국내 연구기획자가 사용하기에 어려운 점이 있다. 따라서 한국과학기술정보연구원에서는 이러한 단점을 극복하기 위해서 계량정보분석시스템 KnowledgeMatrix를 개발하였다. KnowledgeMatrix는 논문 및 특허의 서지정보를 분석하여 지식을 발견하기 위한 목적으로 설계된 독립형(stand-alone) 시스템이다. KnowledgeMatrix의 주요구성을 살펴보면 행렬 생성, 클러스터링, 시각화, 데이터 전처리로 요약된다. 본 논문에서 소개하고 있는 KnowledgeMatrix는 외국의 대표적인 정보분석시스템과 비교했을 때 다양한 기능을 제공하고 있고 특히 영문데이터 처리 이외에 한글데이터 처리가 가능하다는 장점을 갖고 있다.
데이터베이스로부터 지식을 발견하고 이를 연구기획자, 정책의사결정자들이 활용하는 움직임이 전세계적으로 활발해지고 있다. 이러한 연구분야 중 대표적인 것이 계량정보학이고 이 분야를 지원하기 위해서 주로 선진국을 중심으로 분석시스템이 개발되고 있다. 그러나 외국의 분석시스템은 실제 수요자의 요구를 충분히 반영하지 못하고 있고, 고가이면서 한글이 지원되지 않아 국내 연구기획자가 사용하기에 어려운 점이 있다. 따라서 한국과학기술정보연구원에서는 이러한 단점을 극복하기 위해서 계량정보분석시스템 KnowledgeMatrix를 개발하였다. KnowledgeMatrix는 논문 및 특허의 서지정보를 분석하여 지식을 발견하기 위한 목적으로 설계된 독립형(stand-alone) 시스템이다 KnowledgeMatrix의 주요 구성을 살펴보면 행렬 생성, 클러스터링, 시각화, 데이터 전처리로 요약된다. 본 논문에서 소개하고 있는 KnowledgeMatrix는 외국의 대표적인 정보분석시스템과 비교했을 때 다양한 기능을 제공하고 있고 특히 영문데이터 처리 이외에 한글데이터 처리가 가능하다는 장점을 갖고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.