• Title/Summary/Keyword: Forecasting Patent Application

Search Result 10, Processing Time 0.03 seconds

A patent application filing forecasting method based on the bidirectional LSTM (양방향 LSTM기반 시계열 특허 동향 예측 연구)

  • Seungwan, Choi;Kwangsoo, Kim;Sooyeong, Kwak
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.545-552
    • /
    • 2022
  • The number of patent application filing for a specific technology has a good relation with the technology's life cycle and future industry development on that area. So industry and governments are highly interested in forecasting the number of patent application filing in order to take appropriate preparations in advance. In this paper, a new method based on the bidirectional long short-term memory(LSTM), a kind of recurrent neural network(RNN), is proposed to improve the forecasting accuracy compared to related methods. Compared with the Bass model which is one of conventional diffusion modeling methods, the proposed method shows the 16% higher performance with the Korean patent filing data on the five selected technology areas.

A System Dynamics Model for Quantitative Analysis of Patent Systems (특허 시스템의 정량 분석을 위한 시스템 다이내믹스 모형)

  • Yoon, Min-Ho
    • Korean System Dynamics Review
    • /
    • v.17 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • In this paper, a system dynamics model for explaining the application, grant and maintenance of patents is provided. Existing literatures regarding the patent application system are mostly econometric approaches that consider only economic variables such as GDP and R&D. The model in this paper includes patent variables such as disputes as well as economic variables. Moreover, we show that the model can be used in not only a quantitative prediction but also policy experiment. The results of the policy experiment shows that strengthening protection of patents tend to increase the propensity to patent more than R&D investment.

Comparative analysis of US and China artificial intelligence patents trends

  • Kim, Daejung;Jeong, Joong-Hyeon;Ryu, Hokyoung;Kim, Jieun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • With the rapid development of artificial intelligence technology, the patenting activities related to the fields of AI is increasing worldwide. In particular, a share of patent filed in China has exploded in recent years and overtakes the numbers in the US. In the present study, we focus our attention on the patenting activity of China and the US. We analyzed 6,281 and 13,664 patent applications in the US and China respectively between 2008 and 2018, and belonging to the "G06F(Electric Digital Data Processing)", "G06N(Computer Systems Based on Specific Computational Models)", "H04L(Transmission of Digital Information)" and nine more relevant technological classes, as indicated by the International Patent Classification(IPC). Our analysis contributes to: first, the understanding of patent application trends from foreign countries filed in the US and China, 2) patent application status by applicants category such as companies, universities and individuals, 3) the development direction and forecasting vacant technology of AI according to main IPC code. Through the analysis of this paper, we can suggest some implications for patent research related to artificial intelligence in Korea. Plus, by analyzing the most recent patent data, we can provide important information for future artificial intelligence technology research.

A Big Data Learning for Patent Analysis (특허분석을 위한 빅 데이터학습)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.406-411
    • /
    • 2013
  • Big data issue has been considered in diverse fields. Also, big data learning has been required in all areas such as engineering and social science. Statistics and machine learning algorithms are representative tools for big data learning. In this paper, we study learning tools for big data and propose an efficient methodology for big data learning via legacy data to practical application. We apply our big data learning to patent analysis, because patent is one of big data. Also, we use patent analysis result for technology forecasting. To illustrate how the proposed methodology could be applied in real domain, we will retrieve patents related to big data from patent databases in the world. Using searched patent data, we perform a case study by text mining preprocessing and multiple linear regression of statistics.

Analysis of Forward Osmosis Membrane Technology Using International Patent Classification (국제특허분류에 의한 정삼투막 기술의 현황과 전망)

  • Im, Eun-Jung;Kim, Sung-Hyun;Kim, Sang-Gon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.900-907
    • /
    • 2012
  • Research and development is entering on more complicated aspect gradually and tends to increase sharply in a quantitative manner. Technology competition is getting higher. This study intends to raise recognition of a necessity of productivity in a rapidly-changing research and development field and to suggest alternatives for improving its research productivity. For it, the research productivity was analyzed by utilizing two processes of patent and paper analysis. In this paper, we propose a patent analysis method for technology forecasting of the Forward Osmosis Membrane using objective patent data. The application status of patents showed a tendency to increase slightly. The current of FOM technology development in such countries as Korea, USA, Japan, China and EU was analyzed by classifying the patents for 1990 through 2011 according to registration country, assignee, calendar year and technology area.

Research on the Development Direction of Language Model-based Generative Artificial Intelligence through Patent Trend Analysis (특허 동향 분석을 통한 언어 모델 기반 생성형 인공지능 발전 방향 연구)

  • Daehee Kim;Jonghyun Lee;Beom-seok Kim;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.279-291
    • /
    • 2023
  • In recent years, language model-based generative AI technologies have made remarkable progress. In particular, it has attracted a lot of attention due to its increasing potential in various fields such as summarization and code writing. As a reflection of this interest, the number of patent applications related to generative AI has been increasing rapidly. In order to understand these trends and develop strategies accordingly, future forecasting is key. Predictions can be used to better understand the future trends in the field of technology and develop more effective strategies. In this paper, we analyzed patents filed to date to identify the direction of development of language model-based generative AI. In particular, we took an in-depth look at research and invention activities in each country, focusing on application trends by year and detailed technology. Through this analysis, we tried to understand the detailed technologies contained in the core patents and predict the future development trends of generative AI.

Patent data analysis using clique analysis in a keyword network (키워드 네트워크의 클릭 분석을 이용한 특허 데이터 분석)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1273-1284
    • /
    • 2016
  • In this paper, we analyzed the patents on machine learning using keyword network analysis and clique analysis. To construct a keyword network, important keywords were extracted based on the TF-IDF weight and their association, and network structure analysis and clique analysis was performed. Density and clustering coefficient of the patent keyword network are low, which shows that patent keywords on machine learning are weakly connected with each other. It is because the important patents on machine learning are mainly registered in the application system of machine learning rather thant machine learning techniques. Also, our results of clique analysis showed that the keywords found by cliques in 2005 patents are the subjects such as newsmaker verification, product forecasting, virus detection, biomarkers, and workflow management, while those in 2015 patents contain the subjects such as digital imaging, payment card, calling system, mammogram system, price prediction, etc. The clique analysis can be used not only for identifying specialized subjects, but also for search keywords in patent search systems.

A Study on Technological Forecasting for Promising Alternative Technologies Using Fisher-Pry Modification Model (Fisher-Pry 수정모형을 활용한 유망대체기술 예측에 관한 연구)

  • Hong, Sung-Il;Kim, Byung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.104-114
    • /
    • 2019
  • In the global market competition, countries and businesses are actively engaged in technology prediction activities to maximize their profits by attempting to enter and preempting the core technology of the future. In this paper, we propose a growth model based on patent application trends to predict the time to replace a product with a promising new technology to dominate the market. Although the Fisher-Pry model that Bhargava generalized to predict the emergence of promising alternative technologies was relatively satisfactory compared to the original Fisher-Pry model, it was difficult to predict the replacement rate behavior properly due to a parameter problem. The application of the Fisher-Pry Modification Model in the form of a quadratic equation through the patent trend analysis of the optical storage system for the purpose of verifying the time alternative to the light storage technology has resulted in satisfactory verification results. It is expected that small and medium-sized companies and individual researchers will apply this model and use it more easily to predict the time to replace the market for promising replacement technologies.

Development of an Informetric Analysis System KnowledgeMatrix (계량정보분석시스템 KnowledgeMatrix 개발)

  • Lee, Bangrae;Yeo, Woon Dong;Lee, June Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.167-171
    • /
    • 2007
  • Application areas of Knowledge Discovery in Database (KDD) have been expanded into many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has recently fully utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not cheap, korean language process not available, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information (KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. Knowledge Matrix main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. KnowledgeMatrix show better performances and offer more various functions than extant systems.

  • PDF

Development of the KnowledgeMatrix as an Informetric Analysis System (계량정보분석시스템으로서의 KnowledgeMatrix 개발)

  • Lee, Bang-Rae;Yeo, Woon-Dong;Lee, June-Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • Application areas of Knowledge Discovery in Database(KDD) have been expanded to many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not moderate, korean language processing is impossible, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information(KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. KnowledgeMatrix's main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. Matrix generation unit help extract information items which will be analyzed, and calculate occurrence, co-occurrence, proximity of the items. Cluster analysis unit enable matrix data to be clustered by hierarchical or non-hierarchical clustering methods and present tree-type structure of clustered data. Visualization unit offer various methods such as chart, FDP, strategic diagram and PFNet. Data pre-processing unit consists of data import editor, string editor, thesaurus editor, grouping method, field-refining methods and sub-dataset generation methods. KnowledgeMatrix show better performances and offer more various functions than extant systems.