• Title/Summary/Keyword: Forecasting Model

Search Result 2,360, Processing Time 0.032 seconds

한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형 (The Flood Forecasting Model for the In-do Brdg. by the Multi-regression Analysis between the Water-level and the Influence Parameters)

  • 윤강훈;신현민
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.55-69
    • /
    • 1994
  • 홍수시 한강 인도교에 대한 단기간 예보의 정확도를 제고하기 위한 통계학적 홍수예보모형으로 '인도교수위와 영향인자간의 다중회귀분석에 의한 다변수 모형(MM 모형)'과 '수위구간별 다중회귀분석에 의한 다수준 다변수 모형(MMP 모형)' 그리고 '수위의 증감추세에 따른 2 수준 다변수 모형(2MP 모형)'을 제시하였다. 연구대상으로는 분석된 세가지 모형 중, 'MM 모형'은 4시간예측시 평균오차가 35cm 이내의 정도를 나타내며 'MMP 모형'은 모형개발시에 구분한 각 수위구간에 대해서는 매우 작은 평균오차를 나타내지만 실제 홍수사상에 적용시에는 뚜렷한 정도의 향상을 나타내지 못하는 것으로 보인다. 이것은 실제홍수시 수위가 각 구간내에만 머물지 않기 때문인 것으로 보인다. 한편 '2MP 모형'은 예측정도가 가장 높으나 드물게 발산현상이 나타나고 있어 안정도가 떨어지며, 'MMP 모형'은 '2MP 모형'과 비교하여 예측정도는 약간 떨어지나 안정된 예측결과를 보여준다.

  • PDF

신경회로망을 이용한 특수일 부하예측 (An Special-Day Load Forecasting Using Neural Networks)

  • 고희석;김주찬
    • 융합신호처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.53-59
    • /
    • 2004
  • 부하예측의 경우 가장 중요한 문제는 특수일의 부하를 예측하는 것이고, 따라서 본 본문은 과거 특수일 부하 데이터를 이용하여 신경회로망 모델에 의해서 특수일 피크부하를 예측하는 방법을 제시한다. 특수일 부하는 예측되었고, 예측 오차율은 광복절을 제외하고는 l∼2% 정도의 비교적 우수한 예측결과를 도출하였다. 따라서 사용한 예측 모델은 특수일의 부하에 만족스러운 정밀한 예측이 가능하고. 신경회로망은 특수일 부하 예측의 결과를 검증하기 위해 4차 직교다항식모형과 특수일 부하의 예측에효과적인 패턴 변환비를 이용한 신경회로망 모형을 구성했다. 한편, 시간별 특수일의 부하예측에도 신경회로망을 적용한 특수일 부항예측의 경우와 같은 양호한 예측결과를 보였다.

  • PDF

데이터 마이닝을 이용한 단기부하예측 시스템 연구 (A Study on Short-Term Load Forecasting System Using Data Mining)

  • 김도완;박진배;김정찬;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

실시간 낙동강 흐름 예측을 위한 유역 및 수체모델 결합 적용 연구 (A Study on the Operational Forecasting of the Nakdong River Flow with a Combined Watershed and Waterbody Model)

  • 나은혜;신창민;박란주;김덕길;김경현
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.16-24
    • /
    • 2014
  • A combined watershed and receiving waterbody model was developed for operational water flow forecasting of the Nakdong river. The Hydrological Simulation Program Fortran (HSPF) was used for simulating the flow rates at major tributaries. To simulate the flow dynamics in the main stream, a three-dimensional hydrodynamic model, EFDC was used with the inputs derived from the HSPF simulation. The combined models were calibrated and verified using the data measured under different hydrometeological and hydraulic conditions. The model results were generally in good agreement with the field measurements in both calibration and verification. The 7-days forecasting performance of water flows in the Nakdong river was satisfying compared with model calibration results. The forecasting results suggested that the water flow forecasting errors were primarily attributed to the uncertainties of the models, numerical weather prediction, and water release at the hydraulic structures such as upstream dams and weirs. From the results, it is concluded that the combined watershed-waterbody model could successfully simulate the water flows in the Nakdong river. Also, it is suggested that integrating real-time data and information of dam/weir operation plans into model simulation would be essential to improve forecasting reliability.

풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법 (Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency)

  • 위영민
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

추세분석법에 의한 영역의 장기 수요예측 (A Study on Long-Term Spatial Load Forecasting Using Trending Method)

  • 황갑주;최수근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.604-609
    • /
    • 2004
  • This paper suggests a long-term distribution area load forecasting algorithm which offers basic data for distribution planning of power system. To build forecasting model, 4-level hierarchical spatial structure is introduced: System, Region, Area, and Substation. And, each spatial load can be decided proportional to its portion in the higher level. This paper introduces the horizon year loads to improve the forecasting results. And, this paper also introduces an effective load transfer algorithm to improve forecasting stability in case of new or stopped substations. The proposed model is applied to the load forecasting of KEPCO system composed of 16 regions, 85 areas and 761 substations, and the results are compared with those of econometrics model to verify its validity.

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2000년도 추계학술대회
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

시스템다이내믹스 기반의 다세대 확산 수요 예측 : 이동통신 가입자 수요 예측 적용사례 (Forecasting Multi-Generation Diffusion Demand based on System Dynamics : A Case for Forecasting Mobile Subscription Demand)

  • 송희석;김재경
    • Journal of Information Technology Applications and Management
    • /
    • 제24권2호
    • /
    • pp.81-96
    • /
    • 2017
  • Forecasting long-term mobile service demand is inevitable to establish an effective frequency management policy despite the lack of reliability of forecast results. The statistical forecasting method has limitations in analyzing how the forecasting result changes when the scenario for various drivers such as consumer usage pattern or market structure for mobile communication service is changed. In this study, we propose a dynamic model of the mobile communication service market using system dynamics technique and forecast the future demand for long-term mobile communication subscriber based on the dynamic model, and also experiment on the change pattern of subscriber demand under various scenarios.

국내 RFID 시장의 확산 분석 및 예측 모형 (Analysis and Forecasting of Diffusion of RFID Market in Korea)

  • 손동민;문성현;정봉주
    • 대한산업공학회지
    • /
    • 제40권4호
    • /
    • pp.415-423
    • /
    • 2014
  • In recent decades, RFID (Radio Frequency IDentification) technology has been recognized as one of the most core competencies in implementing ubiquitous society. However, Korea has not seen good success in diffusion of RFID even though Korean government continues funding many projects to diffuse the technology in industries. Most previous researches overestimate the growth of Korean RFID market in contrary to real market situation. This study aims to analyze the Korean RFID market and find a reasonable forecasting model for it. Our experimental results show that Bass forecasting model provides the more realistic estimates than any other models and the analyses of forecasting error provide useful information for the better forecasting. We also observed that government policy plays a crucial role in the diffusion of RFID technology in Korea.

Suggesting Forecasting Methods for Dietitians at University Foodservice Operations

  • Ryu Ki-Sang
    • Nutritional Sciences
    • /
    • 제9권3호
    • /
    • pp.201-211
    • /
    • 2006
  • The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model 1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing, Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured using mean squared error and Theil's U-statistic. This study showed how to project meal counts using 10 forecasting methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed by $na\ddot{i}ve$ 2 and naive 3 models. However, naive model 2 and 3 were recommended for using by dietitians in university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester data were better than the 2000 fall semester data to forecast 2001spring semester data.