• Title/Summary/Keyword: Forecast lead time

Search Result 92, Processing Time 0.024 seconds

Assessment of Ocean Surface Current Forecasts from High Resolution Global Seasonal Forecast System version 5 (고해상도 기후예측시스템의 표층해류 예측성능 평가)

  • Lee, Hyomee;Chang, Pil-Hun;Kang, KiRyong;Kang, Hyun-Suk;Kim, Yoonjae
    • Ocean and Polar Research
    • /
    • v.40 no.3
    • /
    • pp.99-114
    • /
    • 2018
  • In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.

Drought Forecasting Using the Multi Layer Perceptron (MLP) Artificial Neural Network Model (다층 퍼셉트론 인공신경망 모형을 이용한 가뭄예측)

  • Lee, Joo-Heon;Kim, Jong-Suk;Jang, Ho-Won;Lee, Jang-Choon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1249-1263
    • /
    • 2013
  • In order to minimize the damages caused by long-term drought, appropriate drought management plans of the basin should be established with the drought forecasting technology. Further, in order to build reasonable adaptive measurement for future drought, the duration and severity of drought must be predicted quantitatively in advance. Thus, this study, attempts to forecast drought in Korea by using an Artificial Neural Network Model, and drought index, which are the representative statistical approach most frequently used for hydrological time series forecasting. SPI (Standardized Precipitation Index) for major weather stations in Korea, estimated using observed historical precipitation, was used as input variables to the MLP (Multi Layer Perceptron) Neural Network model. Data set from 1976 to 2000 was selected as the training period for the parameter calibration and data from 2001 to 2010 was set as the validation period for the drought forecast. The optimal model for drought forecast determined by training process was applied to drought forecast using SPI (3), SPI (6) and SPI (12) over different forecasting lead time (1 to 6 months). Drought forecast with SPI (3) shows good result only in case of 1 month forecast lead time, SPI (6) shows good accordance with observed data for 1-3 months forecast lead time and SPI (12) shows relatively good results in case of up to 1~5 months forecast lead time. The analysis of this study shows that SPI (3) can be used for only 1-month short-term drought forecast. SPI (6) and SPI (12) have advantage over long-term drought forecast for 3~5 months lead time.

Predictability Study of Snowfall Case over South Korea Using TIGGE Data on 28 December 2012 (TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구)

  • Lee, Sang-Min;Han, Sang-Un;Won, Hye Young;Ha, Jong-Chul;Lee, Jeong-Soon;Sim, Jae-Kwan;Lee, Yong Hee
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • This study compared ensemble mean and probability forecasts of snow depth amount associated with winter storm over South Korea on 28 December 2012 at five operational forecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of difference in predicted snow depth at each Ensemble Prediction System (EPS) was investigated by using THe Observing system Research and Predictability EXperiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passing through South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10 cm over southern region of South Korea In this case study, ECMWF showed best prediction skill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistently enhancing the indications present in ensemble mean snow depth forecasts from 7-day lead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincided with observation frequencies. And this snowfall case could be predicted from 5-day lead time by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition, the cause of good performances at ECMWF EPS in predicted snow depth amounts was due to outstanding prediction ability of forming inversion layer with below $0^{\circ}C$ temperature in low level (below 850 hPa) according to $35^{\circ}N$ at 1-day lead time.

The Effect of Meteorological Information on Business Decision-Making with a Value Score Model (가치스코어 모형을 이용한 기상정보의 기업 의사결정에 미치는 영향 평가)

  • Lee, Ki-Kwang;Lee, Joong-Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.89-98
    • /
    • 2007
  • In this paper the economic value of weather forecasts is valuated for profit-oriented enterprise decision-making situations. Value is estimated in terms of monetary profits (or benefits) resulted from the forecast user's decision under the specific payoff structure, which is represented by a profit/loss ratio model combined with a decision function and a value score (VS). The forecast user determines a business-related decision based on the probabilistic forecast, the user's subjective reliability of the forecasts, and the payoff structure specific to the user's business environment. The VS curve for a meteorological forecast is specified by a function of the various profit/loss ratios, providing the scaled economic value relative to the value of a perfect forecast. The proposed valuation method based on the profit/loss ratio model and the VS is adapted for hypothetical sets of forecasts and verified for site-specific probability of precipitation forecast of 12 hour and 24 hour-lead time, which is generated from Korea meteorological administration (KMA). The application results show that forecast information with shorter lead time can provide the decision-makers with great benefits and there are ranges of profit/loss ratios in which high subjective reliability of the given forecast is preferred.

Validation of Real-Time River Flow Forecast Using AWS Rainfall Data (AWS 강우정보의 실시간 유량예측능력 평가)

  • Lee, Byong-Ju;Choi, Jae-Cheon;Choi, Young-Jean;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.607-616
    • /
    • 2012
  • The objective of this study is to evaluate the valid forecast lead time and the accuracy when AWS observed rainfall data are used for real-time river flow forecast. For this, Namhan river basin is selected as study area and SURF model is constructed during flood seasons in 2006~2009. The simulated flow with and without the assimilation of the observed flow data are well fitted. Effectiveness index (EI) is used to evaluate amount of improvement for the assimilation. EI at Chungju, Dalcheon, Hoengsung and Yeoju sites as evaluation points show 32.08%, 51.53%, 39.70% and 18.23% improved, respectively. In the results of the forecasted values using the limited observed rainfall data in each forecast time before peak flow occur, the peak flow under the 20% tolerance range of relative error at Chungju, Dalcheon, Hoengsung and Yeoju sites can be simulated in forecast time-11h, 2h, 3h and 5h and the flow volume in the same condition at those sites can be simulated in forecast time-13h, 2h, 4h and 9h, respectively. From this results, observed rainfall data can be used for real-time peak flow forecast because of basin lag time.

A Consensus Technique for Tropical Cyclone Intensity Prediction over the Western North Pacific (북서태평양 태풍 강도 예측 컨센서스 기법)

  • Oh, Youjung;Moon, Il-Ju;Lee, Woojeong
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.291-303
    • /
    • 2018
  • In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF

Trend Review of Solar Energy Forecasting Technique (태양에너지 예보기술 동향분석)

  • Cheon, Jae ho;Lee, Jung-Tae;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Chang Ki;Kim, Bo-Young;Kim, Jin-Young;Park, Yu Yeon;Kim, Tae Hyun;Jo, Ha Na
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2019
  • The proportion of solar photovoltaic power generation has steadily increased in the power trade market. Solar energy forecast is highly important for the stable trade of volatile solar energy in the existing power trade market, and it is necessary to identify accurately any forecast error according to the forecast lead time. This paper analyzes the latest study trend in solar energy forecast overseas and presents a consistent comparative assessment by adopting a single statistical variable (nRMSE) for forecast errors according to lead time and forecast technology.

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Development of flood forecasting system on city·mountains·small river area in Korea and assessment of forecast accuracy (전국 도시·산지·소하천 돌발홍수예측 시스템 개발 및 정확도 평가)

  • Hwang, Seokhwan;Yoon, Jungsoo;Kang, Narae;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.225-236
    • /
    • 2020
  • It is not easy to provide sufficient lead time for flood forecast in urban and small mountain basins using on-ground rain gauges, because the time concentration in those basins is too short. In urban and small mountain basins with a short lag-time between precipitation and following flood events, it is more important to secure forecast lead times by predicting rainfall amounts. The Han River Flood Control Office (HRFCO) in South Korea produces short-term rainfall forecasts using the Mcgill Algorithm for Precipitation-nowcast by Lagrangian Extrapolation (MAPLE) algorithm that converts radar reflectance of rainfall events. The Flash Flood Research Center (FFRC) in the Korea Institute of Civil Engineering and Building Technology (KICT) installed a flash flood forecasting system using the short-term rainfall forecast data produced by the HRFCO and has provided flash flood information in a local lvel with 1-hour lead time since 2019. In this study, we addressed the flash flood forecasting system based on the radar rainfall and the assessed the accuracy of the forecasting system for the recorded flood events occurred in 2019. A total of 31 flood disaster cases were used to evaluate the accuracy and the forecast accuracy was 90.3% based on the probability of detection.