• Title/Summary/Keyword: Forecast error

Search Result 414, Processing Time 0.025 seconds

Development of a Prediction Model of Solar Irradiances Using LSTM for Use in Building Predictive Control (건물 예측 제어용 LSTM 기반 일사 예측 모델)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of the work is to develop a simple solar irradiance prediction model using a deep learning method, the LSTM (long term short term memory). Other than existing prediction models, the proposed one uses only the cloudiness among the information forecasted from the national meterological forecast center. The future cloudiness is generally announced with four categories and for three-hour intervals. In this work, a daily irradiance pattern is used as an input vector to the LSTM together with that cloudiness information. The proposed model showed an error of 5% for learning and 30% for prediction. This level of error has lower influence on the load prediction in typical building cases.

The dynamic causal relationship between transportation modes and industrial structure (운송수단과 산업구조 간 동태적 인과관계 분석)

  • Min-Ju Song;Hee-Yong Lee
    • Korea Trade Review
    • /
    • v.46 no.5
    • /
    • pp.115-130
    • /
    • 2021
  • The main purpose of this study is to analyze the causal relationship between import-export goods and transportation modes. To this end, five major commodity groups were selected from 2010 to 2018 such as Machinery and transport equipment (SITC 7), manufactured goods classified chiefly by material (SITC 6), chemicals and related products, n.e.s. (SITC 5), mineral, fuels, lubricants, and related materials (SITC 3), and miscellaneous manufactured articles (SITC 8). And using the panel VECM, the difference between transportation modes such as ports and airports was compared and analyzed through panel granger causality, Impulse response function, Forecasting error variance decomposition. As a result, it is confirmed that the causal relationship between major product groups and transportation modes showed different causal relationships depending on the characteristics of port and air transportation.

A study on short-term wind power forecasting using time series models (시계열 모형을 이용한 단기 풍력발전 예측 연구)

  • Park, Soo-Hyun;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1373-1383
    • /
    • 2016
  • The wind energy industry and wind power generation have increased; consequently, the stable supply of the wind power has become an important issue. It is important to accurately predict the wind power with short-term basis in order to make a reliable planning for the power supply and demand of wind power. In this paper, we first analyzed the speed, power and the directions of the wind. The neural network and the time series models (ARMA, ARMAX, ARMA-GARCH, Holt Winters) for wind power generation forecasting were compared based on mean absolute error (MAE). For one to three hour-ahead forecast, ARMA-GARCH model was outperformed, and the neural network method showed a better performance in the six hour-ahead forecast.

Forecasting of Heat Demand in Winter Using Linear Regresson Models for Korea District Heating Corporation (한국지역난방공사의 겨울철 열수요 예측을 위한 선형회귀모형 개발)

  • Baek, Jong-Kwan;Han, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1488-1494
    • /
    • 2011
  • In this paper, we propose an algorithm using linear regression model that forecasts the demand of heated water in winter. To supply heated water to apartments, stores and office buildings, Korea District Heating Corp.(KDHC) operates boilers including electric power generators. In order to operate facilities generating heated water economically, it is essential to forecast daily demand of heated water with accuracy. Analysis of history data of Kangnam Branch of KDHC in 2006 and 2007 reveals that heated water supply on previous day as well as temperature are the most important factors to forecast the daily demand of heated water. When calculated by the proposed regression model, mean absolute percentage error for the demand of heated water in winter of the year 2006 through 2009 does not exceed 3.87%.

Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation (일기 예보와 예측 일사 및 일조를 이용한 태양광 발전 예측)

  • Shin, Dong-Ha;Park, Jun-Ho;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2017
  • Photovoltaic generation which has unlimited energy sources are very intermittent because they depend on the weather. Therefore, it is necessary to get accurate generation prediction with reducing the uncertainty of photovoltaic generation and improvement of the economics. The Meteorological Agency predicts weather factors for three days, but doesn't predict the sunshine and solar radiation that are most correlated with the prediction of photovoltaic generation. In this study, we predict sunshine and solar radiation using weather, precipitation, wind direction, wind speed, humidity, and cloudiness which is forecasted for three days at Meteorological Agency. The photovoltaic generation forecasting model is proposed by using predicted solar radiation and sunshine. As a result, the proposed model showed better results in the error rate indexes such as MAE, RMSE, and MAPE than the model that predicts photovoltaic generation without radiation and sunshine. In addition, DNN showed a lower error rate index than using SVM, which is a type of machine learning.

Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model (개입 승법계절 ARIMA와 인공신경망모형을 이용한 해상운송 물동량의 예측)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2015
  • The purpose of this study is to forecast the seaborne trade volume during January 1994 to December 2014 using the multiplicative seasonal autoregressive integrated moving average (ARIMA) along with intervention factors and an artificial neural network (ANN) model. Diagnostic checks of the ARIMA model were conducted using the Ljung-Box Q and Jarque-Bera statistics. All types of ARIMA process satisfied the basic assumption of residuals. The ARIMA(2,1,0) $(1,0,1)_{12}$ model showed the lowest forecast error. In addition, the prediction error of the artificial neural network indicated a level of 5.9% on hidden layer 5, which suggests a relatively accurate forecasts. Furthermore, the ex-ante predicted values based on the ARIMA model and ANN model are presented. The result shows that the seaborne trade volume increases very slowly.

An Empirical Study on the Contribution of Housing Price to Low Fertility (주택가격 상승 충격의 저출산 심화 기여도 연구)

  • Park, Jinbaek
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.607-612
    • /
    • 2021
  • This study estimated the impact of the shock of housing price increase on the total fertility rate and the contribution of each variable to changes in the TFR. This study is differentiated by estimating the contribution rate of each variable to the fertility rate through the Shapley decomposition and the panel VAR's forecast error variance decomposition, which previous studies have not attempted. The main results of this study are as follows. First, the decline in the TFR in Korea has been strongly influenced by the recent decline in the total fertility rate, and this influence is expected to continue in the future. In the case of housing costs, in the past, housing sales prices had a relatively small contribution to changes in the total fertility rate compared to the jeonse prices, but their influence is expected to increase in the long term in the future. It has been demonstrated that private education expenses other than housing sale price and Jeonse price also acted as a major cause of the decline in the total fertility rate.

A Study on the PM2.5 forcasting Method in Busan Using Deep Neural Network (DNN을 활용한 부산지역 초미세먼지 예보방안 )

  • Woo-Gon Do;Dong-Young Kim;Hee-Jin Song;Gab-Je Cho
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.595-611
    • /
    • 2023
  • The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

Forecast Sensitivity to Observations for High-Impact Weather Events in the Korean Peninsula (한반도에 발생한 위험 기상 사례에 대한 관측 민감도 분석)

  • Kim, SeHyun;Kim, Hyun Mee;Kim, Eun-Jung;Shin, Hyun-Cheol
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • Recently, the number of observations used in a data assimilation system is increasing due to the enormous amount of observations, including satellite data. However, it is not clear that all of these observations are always beneficial to the performance of the numerical weather prediction (NWP). Therefore, it is important to evaluate the effect of observations on these forecasts so that the observations can be used more usefully in NWP process. In this study, the adjoint-based Forecast Sensitivity to Observation (FSO) method with the KMA Unified Model (UM) is applied to two high-impact weather events which occurred in summer and winter in Korea in an effort to investigate the effects of observations on the forecasts of these events. The total dry energy norm is used as a response function to calculate the adjoint sensitivity. For the summer case, TEMP observations have the greatest total impact while BOGUS shows the greatest impact per observation for all of the 24-, 36-, and 48-hour forecasts. For the winter case, aircraft, ATOVS, and ESA have the greatest total impact for the 24-, 36-, and 48-hour forecasts respectively, while ESA has the greatest impact per observation. Most of the observation effects are horizontally located upwind or in the vicinity of the Korean peninsula. The fraction of beneficial observations is less than 50%, which is less than the results in previous studies. As an additional experiment, the total moist energy norm is used as a response function to measure the sensitivity of 24-hour forecast error to observations. The characteristics of the observation impact with the moist energy response function are generally similar to those with the dry energy response function. However, the ATOVS observations were found to be sensitive to the response function, showing a positive (a negative) effect on the forecast when using the dry (moist) norm for the summer case. For the winter case, the dry and moist energy norm experiments show very similar results because the adjoint of KMA UM does not calculate the specific humidity of ice properly such that the dry and moist energy norms are very similar except for the humidity in air that is very low in winter.