• 제목/요약/키워드: Forecast data

검색결과 1,635건 처리시간 0.03초

Improving Forecast Accuracy of Wind Speed Using Wavelet Transform and Neural Networks

  • Ramesh Babu, N.;Arulmozhivarman, P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.559-564
    • /
    • 2013
  • In this paper a new hybrid forecast method composed of wavelet transform and neural network is proposed to forecast the wind speed more accurately. In the field of wind energy research, accurate forecast of wind speed is a challenging task. This will influence the power system scheduling and the dynamic control of wind turbine. The wind data used here is measured at 15 minute time intervals. The performance is evaluated based on the metrics, namely, mean square error, mean absolute error, sum squared error of the proposed model and compared with the back propagation model. Simulation studies are carried out and it is reported that the proposed model outperforms the compared model based on the metrics used and conclusions were drawn appropriately.

축열운전을 위한 기상예보치의 이용가능성에 대한 검토 (Study on the Feasibility of Applying Forecasted Weather Data for Operations of a Thermal Storage System)

  • 정재훈;신영기;박병윤
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.87-94
    • /
    • 2006
  • In this paper, we investigated a feasibility of applying highest and lowest temperatures of the next day forecasted from a meteorological observatory to operation of an air-conditioning system with thermal storage. First we investigated specific characteristics of the time series of forecasted temperatures and errors in Osaka from 1994 to 1996. Since the forecast error is not always small, it might be difficult to use the forecasted data without correction for the sizing and the control of the thermal storage system. On the other hand, the autocorrelation functions of the forecast errors decrease relatively slowly during high summer season when cooling thermal storage is required. Since the values of the autocorrelation function; for one day are larger than 0.4, not small, the forecast errors can be predicted by proper statistical analysis. Thus, the forecasted values of the highest temperatures for the next day were improved by using the stochastic time series models.

시간적 계층을 이용한 교통사고 발생건수 예측 (Temporal hierarchical forecasting with an application to traffic accident counts)

  • 전관영;성병찬
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.229-239
    • /
    • 2018
  • 본 논문에서는 시간적 계층 개념을 활용하여 시계열 자료를 예측하는 방법을 소개한다. 횡단적 계층 자료 분석에서와 유사한 방법으로 중복되지 않는 시간적 계층을 시계열 자료에 구조화할 수 있다. 이러한 시간적 계층을 활용하여 조정된 예측은 기존의 계층별 독립적 기저 예측 및 상향식 예측보다 더 정확하고 강건한 예측값을 생성한다. 실증 분석으로서 국내 교통사고 발생건수를 시간적 계층 개념을 활용하여 예측한다. 분석 결과, 조정 예측이 기존의 다른 예측보다 예측 성능면에서 더 우수함을 확인할 수 있다.

WRF-Fire 산불 연료 · 지형자료 해상도와 지상바람의 연소면적 모의민감도 및 오차 분석연구 (Study on Sensitivities and Fire Area Errors in WRF-Fire Simulation to Different Resolution Data Set of Fuel and Terrain, and Surface Wind)

  • 성지혜;한상옥;정종혁;김기훈
    • 대기
    • /
    • 제23권4호
    • /
    • pp.485-500
    • /
    • 2013
  • This study conducted WRF-Fire simulations in order to investigate sensitivities of the resolution of fire fuel and terrain data sets, and the surface wind to simulated fire area. The sensitivity simulations were consisted of 8 different WRF-Fire runs, each of which used different combination of data sets of fire fuel and terrain with different resolution. From the results it was turned out that the surface wind was most sensitive. The next was fire fuel and then fire terrain. Unfortunately, every run produced too much fire area. In other words no simulations succeeded in simulating such proper fire area so as for the WRF-Fire to be used realistically. It was verified that the errors of fire area from each runs were contributed by 41%, 53%, and 6% from surface wind, fire fuel, and fire terrain, respectively. Finally this study suggested that the selection of Anderson fuel category in the area of interest seemed to be very critical in the performance of WRF-Fire simulations.

제주지역 도로결빙 예측에 관한 연구 (A Study on Prediction of Road Freezing in Jeju)

  • 이영미;오상율;이수정
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.531-541
    • /
    • 2018
  • Road freezing caused by snowfall during wintertime causes traffic congestion and many accidents. To prevent such problems, we developed, in this study, a system to predict road freezing based on weather forecast data and the freezing generation modules. The weather forecast data were obtained from a high-resolution model with 1 km resolution for Jeju Island from 00:00 KST on December 1, 2017, to 23:00 KST on February 28, 2018. The results of the weather forecast data show that index of agreement (IOA) temperature was higher than 0.85 at all points, and that for wind speed was higher than 0.7 except in Seogwipo city. In order to evaluate the results of the freezing predictions, we used model evaluation metrics obtained from a confusion matrix. These metrics revealed that, the Imacho module showed good performance in precision and accuracy and that the Karlsson module showed good performance in specificity and FP rate. In particular, Cohen's kappa value was shown to be excellent for both modules, demonstrating that the algorithm is reliable. The superiority of both the modules shows that the new system can prevent traffic problems related to road freezing in the Jeju area during wintertime.

Production of Fine-resolution Agrometeorological Data Using Climate Model

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Lee, Deog-Bae;Kang, Su-Chul;Hur, Jina
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2011년도 학술발표회
    • /
    • pp.20-27
    • /
    • 2011
  • A system for fine-resolution long-range weather forecast is introduced in this study. The system is basically consisted of a global-scale coupled general circulation model (CGCM) and Weather Research and Forecast (WRF) regional model. The system makes use of a data assimilation method in order to reduce the initial shock or drift that occurs at the beginning of coupling due to imbalance between model dynamics and observed initial condition. The long-range predictions are produced in the system based on a non-linear ensemble method. At the same time, the model bias are eliminated by estimating the difference between hindcast model climate and observation. In this research, the predictability of the forecast system is studied, and it is illustrated that the system can be effectively used for the high resolution long-term weather prediction. Also, using the system, fine-resolution climatological data has been produced with high degree of accuracy. It is proved that the production of agrometeorological variables that are not intensively observed are also possible.

  • PDF

KEOP-2005 집중관측자료를 이용한 관측시스템 실험 연구 (Observing System Experiments Using the Intensive Observation Data during KEOP-2005)

  • 원혜영;박창근;김연희;이희상;조천호
    • 대기
    • /
    • 제18권4호
    • /
    • pp.299-316
    • /
    • 2008
  • The intensive upper-air observation network was organized over southwestern region of the Korean Peninsula during the Korea Enhanced Observing Program in 2005 (KEOP-2005). In order to examine the effect of additional upper-air observation on the numerical weather forecasting, three Observing System Experiments (OSEs) using Korea Local Analysis and Prediction System (KLAPS) and Weather Research and Forecasting (WRF) model with KEOP-2005 data are conducted. Cold start case with KEOP-2005 data presents a remarkable predictability difference with only conventional observation data in the downstream and along the Changma front area. The sensitivity of the predictability tends to decrease under the stable atmosphere. Our results indicates that the effect of intensive observation plays a role in the forecasting of the sensitive area in the numerical model, especially under the unstable atmospheric conditions. When the intensive upper-air observation data (KEOP-2005 data) are included in the OSEs, the predictability of precipitation is partially improved. Especially, when KEOP-2005 data are assimilated at 6-hour interval, the predictability on the heavy rainfall showing higher Critical Success Index (CSI) is highly improved. Therefore it is found that KEOP-2005 data play an important role in improving the position and intensity of the simulated precipitation system.

기상드론 바람관측자료의 정확도 확보를 통한 대기하층 시공간 관측공백 해소 연구 (A Study on Filling the Spatio-temporal Observation Gaps in the Lower Atmosphere by Guaranteeing the Accuracy of Wind Observation Data from a Meteorological Drone)

  • 이승협;박미은;전혜림;박미르
    • 대기
    • /
    • 제33권5호
    • /
    • pp.441-456
    • /
    • 2023
  • The mobile observation method, in which a meteorological drone observes while ascending, can observe the vertical profile of wind at 1 m-interval. In addition, since continuous flights are possible at time intervals of less than 30 minutes, high-resolution observation data can be obtained both spatially and temporally. In this study, we verify the accuracy of mobile observation data from meteorological drone (drone) and fill the spatio-temporal observation gaps in the lower atmosphere. To verify the accuracy of mobile observation data observed by drone, it was compared with rawinsonde observation data. The correlation coefficients between two equipment for a wind speed and direction were 0.89 and 0.91, and the root mean square errors were 0.7 m s-1 and 20.93°. Therefore, it was judged that the drone was suitable for observing vertical profile of the wind using mobile observation method. In addition, we attempted to resolve the observation gaps in the lower atmosphere. First, the vertical observation gaps of the wind profiler between the ground and the 150 m altitude could be resolved by wind observation data using the drone. Secondly, the temporal observation gaps between 3-hour interval in the rawinsonde was resolved through a drone observation case conducted in Taean-gun, Chungcheongnam-do on October 13, 2022. In this case, the drone mobile observation data every 30-minute intervals could observe the low-level jet more detail than the rawinsonde observation data. These results show that the mobile observation data of the drone can be used to fill the spatio-temporal observation gaps in the lower atmosphere.

기상예보시스템을 이용한 가공송전선의 단기간 동적송전용량 예측 (Short-Term Dynamic Line Rating Prediction in Overhead Transmission Lines Using Weather Forecast System)

  • 김성덕;이승수;장태인;장지원;이동일
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.158-169
    • /
    • 2004
  • 본 논문에서는 실시간 기상예보데이터를 사용하여 가공송전선의 단시간 송전용량을 예측하기 위한 방법을 제안한다. 기상청에서 제공되는 예보기온, 풍속등급 및 날씨코드와 같은 3시간 예보요소들을 분석하여 기상예보데이터와 실제 측정데이터 사이의 상관성이 분석되었다. 동적송전용량을 결정하는데 사용하기 위하여 이러한 요소들은 적당한 수치로 변환되었다. 또한 풍속과 일사량에 대한 신뢰도를 개선하기 위하여 적응뉴로퍼지시스템이 설계되었다. 기상예보데이터가 송전용량을 신뢰성을 갖도록 추정하는데 사용될 수 있음을 밝혔다. 그 결과 제안된 예측시스템이 단시간 용량예측에 효율적으로 실용화될 수 있을 것이다.

광역 위성 영상과 수치예보자료를 이용한 여름철 강수량 예측 (Summer Precipitation Forecast Using Satellite Data and Numerical Weather Forecast Model Data)

  • 김광섭;조소현
    • 한국수자원학회논문집
    • /
    • 제45권7호
    • /
    • pp.631-641
    • /
    • 2012
  • 본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.