• Title/Summary/Keyword: Forecast accuracy

Search Result 488, Processing Time 0.029 seconds

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.

Consultation Management Model based on Behavior Classification of Special-Needs Students (특수학생들의 행동 분류 기반의 상담관리 모델)

  • Park, Won-Cheol;Park, Koo-Rack
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.21-30
    • /
    • 2021
  • Unlike behaviors that are generally known, information regarding unspecific behaviors is insufficient. For an education or guidance regarding the unspecific behaviors, collection and management of data regarding the unspecific behaviors of special-needs students are needed. In this paper, a consultation management model based on behavior classification of special-needs students using machine learning is proposed. It collects data by photographing the behavior of special students in real time, analyzes the behavior pattern, composes a data set, and trains it in the suggestion system. It is possible to improve the accuracy by comparing the behavior of special students photographed later into the suggestion system and analyzing the results by comparing it with the existing data again. The test has been performed by arbitrarily applying unspecific behaviors that are not stored in the database, and the forecast model has accurately classified and grouped the input data. Also, it has been verified that it is possible to accurately distinguish and classify the behaviors through the feature data of the behaviors even if there are some errors in the input process.

A Study of the Sustainable Operation Technologies in the Power Plant Facilities (발전 설비 지속 가능 운영 기술 연구)

  • Lee, Chang Yeol;Park, Gil Joo;Kim, Twehwan;Gu, Yeong Hyeon;Lee, Sung-iI
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.842-848
    • /
    • 2020
  • Purpose: It is important to operate safely and economically in obsolescent power plant facilities. Economical operation is related in the balance of the supply and demand. Safety operation predicts the possible risks in the facilities and then, takes measures to the facilities. For the monitoring of the power plant facilities, we needs several kinds of the sensing system. From the sensors data, we can predict the possible risk. Method: We installed the acoustic, vibration, electric and smoke sensors in the power plant facilities. Using the data, we developed 3 kinds of prediction models, such as, demand prediction, plant engine abnormal prediction model, and risk prediction model. Results: Accuracy of the demand prediction model is over 90%. The other models make a stable operation of the system. Conclusion: For the sustainable operation of the obsolescent power plant, we developed 3 kinds of AI prediction models. The model apply to JB company's power plant facilities.

A Study of Iterative QC-BC Method for AMSU-A in the KIAPS Data Assimilation System (KIAPS 자료동화 시스템에서 AMSU-A의 품질검사 및 편향보정 반복기법에 관한 연구)

  • Jeong, Han-Byeol;Chun, Hyoung-Wook;Lee, Sihye
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.241-255
    • /
    • 2019
  • Bias correction (BC) and quality control (QC) are essential steps for the proper use of satellite observations in data assimilation (DA) system. BC should be calculated over quality controlled observation. And also QC should be performed for bias corrected observation. In the Korea Institute of Atmospheric Prediction Systems (KIAPS) Package for Observation Processing (KPOP), we adopted an adaptive BC method that calculates the BC coefficients with background at the analysis time rather than using static BC coefficients. In this study, we have developed an iterative QC-BC method for Advanced Microwave Sounding Unit-A (AMSU-A) to reduce the negative feedback from the interaction between BC and QC. The new iterative QC-BC is evaluated in the KIAPS 3-dimensional variational (3DVAR) DA cycle for January 2016. The iterative QC-BC method for AMSU-A shows globally significant benefits for error reduction of the temperature. The positive impacts for the temperature were predominant at latitudes of $30^{\circ}{\sim}90^{\circ}$ of both hemispheres. Moreover, the background warm bias across the troposphere is decreased. Even though AMSU-A is mainly designed for atmospheric temperature sounding, the improvement of AMSU-A pre-processing module has a positive impact on the wind component over latitudes of $30^{\circ}S$ near upper-troposphere, respectively. Consequently, the 3-day-forecast-accuracy is improved about 1% for temperature and zonal wind in the troposphere.

Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding (원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델)

  • Kim, Kwang Ho;Chang, Byunghoon;Choi, Hwang Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.852-857
    • /
    • 2019
  • In order to manage the demand resources of project participants and to provide appropriate strategies in the virtual power plant's power trading platform for consumers or operators who want to participate in the distributed resource collective trading market, it is very important to forecast the next day's demand of individual participants and the overall system's electricity demand. This paper developed a power demand forecasting model for the next day. For the model, we used LSTM algorithm of deep learning technique in consideration of time series characteristics of power demand forecasting data, and new scheme is applied by applying one-hot encoding method to input/output values such as power demand. In the performance evaluation for comparing the general DNN with our LSTM forecasting model, both model showed 4.50 and 1.89 of root mean square error, respectively, and our LSTM model showed high prediction accuracy.

Improvement and Evaluation of Emission Formulas in UM-CMAQ-Pollen Model (UM-CMAQ-Pollen 모델의 참나무 꽃가루 배출량 산정식 개선과 예측성능 평가)

  • Kim, Tae-Hee;Seo, Yun Am;Kim, Kyu Rang;Cho, Changbum;Han, Mae Ja
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • For the allergy patient who needs to know the situation about the extent of pollen risk, the National Institute of Meteorological Sciences developed a pollen forecasting system based on the Community Multiscale Air Quality Modeling (CMAQ). In the old system, pollen emission from the oak was estimated just based on the airborne concentration and meteorology factors, resulted in high uncertainty. For improving the quality of current pollen forecasting system, therefore the estimation of pollen emission is now corrected based on the observation of pollen emission at the oak forest to better reflect the real emission pattern. In this study, the performance of the previous (NIMS2014) and current (NIMS2016) model system was compared using observed oak pollen concentration. Daily pollen concentrations and emissions were simulated in pollen season 2016 and accuracy of onset and end of pollen season were evaluated. In the NIMS2014 model, pollen season was longer than actual pollen season; The simulated pollen season started 6 days earlier and finished 13.25 days later than the actual pollen season. The NIMS2016 model, however, the simulated pollen season started only 1.83 days later, and finished 0.25 days later than the actual pollen season, showing the improvement to predict the temporal range of pollen events. Also, the NIMS2016 model shows better performance for the prediction of pollen concentration, while there is a still large uncertainty to capture the maximum pollen concentration at the target site. Continuous efforts to correct these problems will be required in the future.

KTX passenger demand forecast with multiple intervention seasonal ARIMA models (다중개입 계절형 ARIMA 모형을 이용한 KTX 수송수요 예측)

  • Cha, Hyoyoung;Oh, Yoonsik;Song, Jiwoo;Lee, Taewook
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.139-148
    • /
    • 2019
  • This study proposed a multiple intervention time series model to predict KTX passenger demand. In order to revise the research of Kim and Kim (Korean Society for Railway, 14, 470-476, 2011) considering only the intervention of the second phase of Gyeong-bu before November of 2011, we adopted multiple intervention seasonal ARIMA models to model the time series data with additional interventions which occurred after November of 2011. Through the data analysis, it was confirmed that the effects of various interventions such as Gyeong-bu and Ho-nam 2 phase, outbreak of MERS and national holidays, which affected the KTX transportation demand, are successfully explained and the prediction accuracy could be quite improved significantly.

Forecasting the Volume of Imported Passenger Cars at PyeongTaek·Dangjin Port Using System Dynamics (시스템다이내믹스를 활용한 평택·당진항 수입 승용차 물동량 예측에 관한 연구)

  • Lee, Jae-Gu;Lee, Ki-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.517-523
    • /
    • 2020
  • Pyeongtaek·Dangjin port handles the largest volume of finished vehicles in Korea, including more than 95% of imported cars. However, since the volume of imported cars has been stagnant since 2015, officials planning to invest in port development or automobile-related industries must make new forecasts. Economic variables such as the GDP often have been used in predicting automobile volume, but prior research showed that the impact of these economic variables on automobile volume I has been gradually decreasing in developed countries. These variables remain important predictors, however, in developing countries that experience rapid economic growth. In this study, predicting the volume of imported passenger cars at Pyeongtaek·Dangjin port, the decreasing Korean population was a major factor we considered. Our forecast showed that the volume of imported passenger cars at Pyeongtaek·Dangjin port will gradually decrease -by 2021. The Mean Absolute Percentage Error (MAPE) verification was performed to measure the accuracy of the predicted results, and the scenario analysis was performed on the share of imported passenger cars.

Estimation of ESP Probability considering Weather Outlook (기상예보를 고려한 ESP 유출 확률 산정)

  • Ahn, Jung Min;Lee, Sang Jin;Kim, Jeong Kon;Kim, Joo Cheol;Maeng, Seung Jin;Woo, Dong Hyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.264-272
    • /
    • 2011
  • The objective of this study was to develop a model for predicting long-term runoff in a basin using the ensemble streamflow prediction (ESP) technique and review its reliability. To achieve the objective, this study improved not only the ESP technique based on the ensemble scenario analysis of historical rainfall data but also conventional ESP techniques used in conjunction with qualitative climate forecasting information, and analyzed and assessed their improvement effects. The model was applied to the Geum River basin. To undertake runoff forecasting, this study tried three cases (case 1: Climate Outlook + ESP, case 2: ESP probability through monthly measured discharge, case 3: Season ESP probability of case 2) according to techniques used to calculate ESP probabilities. As a result, the mean absolute error of runoff forecasts for case 1 proposed by this study was calculated as 295.8 MCM. This suggests that case 1 showed higher reliability in runoff forecasting than case 2 (324 MCM) and case 3 (473.1 MCM). In a discrepancy-ratio accuracy analysis, the Climate Outlook + ESP technique displayed 50.0%. This suggests that runoff forecasting using the Climate Outlook +ESP technique with the lowest absolute error was more reliable than other two cases.

UC Model with ARIMA Trend and Forecasting U.S. GDP (ARIMA 추세의 비관측요인 모형과 미국 GDP에 대한 예측력)

  • Lee, Young Soo
    • International Area Studies Review
    • /
    • v.21 no.4
    • /
    • pp.159-172
    • /
    • 2017
  • In a typical trend-cycle decomposition of GDP, the trend component is usually assumed to follow a random walk process. This paper considers an ARIMA trend and assesses the validity of the ARIMA trend model. I construct univariate and bivariate unobserved-components(UC) models, allowing the ARIMA trend. Estimation results using U.S. data are favorable to the ARIMA trend models. I, also, compare the forecasting performance of the UC models. Dynamic pseudo-out-of-sample forecasting exercises are implemented with recursive estimations. I find that the bivariate model outperforms the univariate model, the smoothed estimates of trend and cycle components deliver smaller forecasting errors compared to the filtered estimates, and, most importantly, allowing for the ARIMA trend can lead to statistically significant gains in forecast accuracy, providing support for the ARIMA trend model. It is worthy of notice that trend shocks play the main source of the output fluctuation if the ARIMA trend is allowed in the UC model.