Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.1.001

Improvement and Evaluation of Emission Formulas in UM-CMAQ-Pollen Model  

Kim, Tae-Hee (Applied Meteorology Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Seo, Yun Am (Applied Meteorology Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Kim, Kyu Rang (Applied Meteorology Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Cho, Changbum (Applied Meteorology Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Han, Mae Ja (Applied Meteorology Research Division, National Institute of Meteorological Research, Korea Meteorological Administration)
Publication Information
Atmosphere / v.29, no.1, 2019 , pp. 1-12 More about this Journal
Abstract
For the allergy patient who needs to know the situation about the extent of pollen risk, the National Institute of Meteorological Sciences developed a pollen forecasting system based on the Community Multiscale Air Quality Modeling (CMAQ). In the old system, pollen emission from the oak was estimated just based on the airborne concentration and meteorology factors, resulted in high uncertainty. For improving the quality of current pollen forecasting system, therefore the estimation of pollen emission is now corrected based on the observation of pollen emission at the oak forest to better reflect the real emission pattern. In this study, the performance of the previous (NIMS2014) and current (NIMS2016) model system was compared using observed oak pollen concentration. Daily pollen concentrations and emissions were simulated in pollen season 2016 and accuracy of onset and end of pollen season were evaluated. In the NIMS2014 model, pollen season was longer than actual pollen season; The simulated pollen season started 6 days earlier and finished 13.25 days later than the actual pollen season. The NIMS2016 model, however, the simulated pollen season started only 1.83 days later, and finished 0.25 days later than the actual pollen season, showing the improvement to predict the temporal range of pollen events. Also, the NIMS2016 model shows better performance for the prediction of pollen concentration, while there is a still large uncertainty to capture the maximum pollen concentration at the target site. Continuous efforts to correct these problems will be required in the future.
Keywords
CMAQ; pollen forecast; Oak pollen; emission; pollen season;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beggs, P. J., 2010: Adaptation to impacts of Climate Change on Aeroallergens and Allergic Respiratory Diseases. Int. J. Environ. Res. Public Health, 7, 3006-3021, doi:10.3390/ijerph7083006.   DOI
2 Burkard, 2015: 7-day recording volumetric spore trap [Available online at http://www.burkardscientific.co.uk/agronomics/hirst_spore_sampler.htm].
3 Byun, D. W. and J. K. S. Ching, 1999: Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. U. S. Environmental Protection Agency, Washington, D.C. EPA/600/R-99/030 (NTIS PB2000-100561), 757 pp.
4 Efstathiou, C., S. Isukapalli, and P. Georgopoulos, 2011: A mechanistic modeling system for estimating largescale emissions and transport of pollen and co-allergens. Atmos. Environ., 45, 2260-2276, doi:10.1016/j.atmosenv.2010.12.008.   DOI
5 Helbig, N., B. Vogel, H. Vogel, and F. Fiedler, 2004: Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3-19.   DOI
6 Hernandez-Ceballos, M. A., J. Soares, H. Garcia-Mozo, M. Sofiev, J. P. Bolivar, and C. Galan, 2014: Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiologia, 30, 239-255, doi:10.1007/s10453-013-9324-0.   DOI
7 Hong, C.-S., 2015: Pollen allergy plants in Korea. Allergy Asthma Respir. Dis., 3, 239-254, doi:10.4168/aard.2015.3.4.239.   DOI
8 Jackson, S. T., and M. E. Lyford, 1999: Pollen dispersal models in quaternary plant ecology: assumptions, parameters, and prescriptions. Bot. Rev., 65, 39-75, doi:10.1007/BF02856557.   DOI
9 Kim, H. K., and T. H. Kim, 2016: Current trends in treatment of allergic rhinitis. J. Korean Med. Assoc., 59, 300-308, doi:10.5124/jkma.2016.59.4.300.   DOI
10 Kim, K. R., K.-J. Park, H.-R. Lee, M. Kim, Y.-J. Choi, and J.-W. Oh, 2012: Development and Evaluation of the Forecast Models for Daily Pollen Allergy. Korean Journal of Agricultural and Forest Meteorology, 14, 265-268, doi:10.5532/KJAFM.2012.14.4.265 (in Korean with English abstract).   DOI
11 Kim, S.-H., and H. J. Yoon, 2011: Climate change and respiratory allergic diseases. J. Korean Med. Assoc., 54, 161-168, doi: 10.5124/jkma.2011.54.2.161.   DOI
12 Lee, J. S., Y. H. Lee, J. C. Ha, and H. C. Lee, 2012: Objective analysis of temperature using the elevation-dependent weighting function. Atmosphere, 22, 233-243 (in Korean with English abstract).   DOI
13 Lewis, W. H., P. Vinay, and V. E. Zenger, 1983: Airborne and allergenic pollen of north America. The Johns Hopkins University Press, 288 pp.
14 Lim, Y. K., K. R. Kim, C. Cho, M. Kim, H. S. Choi, M. J. Han, I. Oh, and B.-J. Kim, 2015: Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea. Atmosphere, 25, 221-233 (in Korean with English abstract).   DOI
15 Maya-Manzano, J. M., S. Fernandez-Rodriguez, M. Smith, R. Tormo-Molina, A. M. Reynolds, I. Silva-Palacios, A. Gonzalo-Garijo, and M. Sadys, 2016: Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas. Sci. Total Environ., 571, 1037-1047, doi:10.1016/j.scitotenv.2016.07.094.   DOI
16 Pauling, A., M. W. Rotach, B. Clot, and Contributors to the European Aeroallergen Network (EAN), 2012: A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. Int J. Biometeorol, 56, 949-958, doi:10.1007/s00484-011-0505-7.   DOI
17 Oh, I., K. R. Kim, J.-H. Bang, Y.-K. Lim, C. Cho, J.-W. Oh, Y. Kim, and M.-K. Hwang, 2017: A High-resolution Numerical Simulation and Evaluation of Oak Pollen Dispersion Using the CMAQ-pollen Model. Journal of Korean Society for Atmospheric Environment, 33, 31-44 (in Korean with English abstract).   DOI
18 Oh, J.-W., 2009: Development of pollen concentration prediction models. J. Korean Med. Assoc., 52, 579-591.   DOI
19 Park, K.-J., H.-A. Kim, K. R. Kim, J.-W. Oh, S.-Y. Lee, and Y.-J Choi, 2008: Characteristics of regional distribution of pollen concentration in Korea peninsula. Korean J. Agric. Forest Meteor., 10, 167-176 (in Korean with English abstract).   DOI
20 Schueler, S., and K. H. Schlunzen, 2006: Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ. Model. Assess., 11, 179-194.   DOI
21 Siljamo, P., and Coauthors, 2013: A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. Int. J. Biometeorol., 57, 125-136, doi:10.1007/s00484-012-0539-5.   DOI
22 Sofiev, M., P. Siljamo, H. Ranta, T. Linkosalo, S. Jaeger, A. Rasmussen, A. Rantio-Lehtimaki, E. Severova, and J. Kukkonen, 2013: A numerical model of birch pollen emission and dispersion in the atmosphere. Description of emission module. Int. J. Biometeorol., 57, 45-58, doi:10.1007/s00484-012-0532-z.   DOI
23 Sofiev, M., P., and Coauthors, 2015: MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmos. Chem. Phys., 15, 8115-8130, doi:10.5194/acp-15-8115-2015.   DOI
24 Zink, K., P. Kafumann, B. Petitpierre, O. Broennimann, A. Guisan, E. Gentilini, and M. W. Rotach, 2017: Numerical ragweed pollen forecasts using different source maps: a comparison for France. Int. J. Biometeorol, 61, 23-33, doi:10.1007/s00484-016-1188-x.
25 Zhang, R., and Coauthors, 2013: Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences, 10, 3977-4023, doi:10.5194/bgd-10-3977-2013.   DOI
26 Zink, K., A. Pauling, M. W. Rotach, H. Vogel, P. Kaufmann, and B. Clot, 2013: EMPOL 1.0: a new parameterization of pollen emission in numerical weather prediction models. Geosci. Model Dev., 6, 1961-1975, doi:10.5194/gmd-6-1961-2013.   DOI