• Title/Summary/Keyword: Forecast Accuracy

Search Result 490, Processing Time 0.643 seconds

A Study on Forecast Accuracies by the Localized Land Forecast Areas over South Korea (육상 국지 예보 구역의 예보 정확도에 관한 연구)

  • Park, Chang-Yong;Choi, Young-Eun;Kim, Seung-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1 s.118
    • /
    • pp.1-14
    • /
    • 2007
  • This study aimed to evaluate weather forecast accuracies of minimum temperature, maximum temperature, precipitation and sky cover by the localized land forecast areas over South Korea Average forecast accuracy score of precipitation was the lowest while that of sky cover was the highest during the study period Overall forecast accuracy scores for Gangwon-do was the lowest while those for Gyeongsangnam-do and Gyeongsangbuk-do were higher than other areas. The frequencies of perfect forecast(eight points) by seasons, were the highest during winter and the lowest during summer. pressure pattern analyses for days when forecast accuracy scores were poor, showed that precipitation forecast accuracy scores were lower due to the movement of the stationary fronts during summers. When continental polar air masses expanded, forecast accuracy of temperature became greatly lower during autumns and winters As the migratory anticyclone pattern rapidly moved, forecast accuracy became lower during springs and autumns. Forecast accuracies were compared by wind directions at 850hPa for the Young-dong region where forecast accuracy was the lowest. Forecast accuracy scores on minimum and maximum temperatures were low when winds were westerlies and forecast accuracy scores of precipitation were low when winds were easterlies.

The Effect of firm-specifics on forecast accuracy: The case of IPO firms in Korea (코스닥 신규상장 기업의 특성에 따른 재무분석가의 이익예측력에 관한 연구)

  • Jeon, Seong il;Lee, Ki se
    • Knowledge Management Research
    • /
    • v.13 no.5
    • /
    • pp.1-13
    • /
    • 2012
  • This study investigates whether firm-specifics affect forecast accuracy using a sample of IPO firms in Korea. The forecasts accuracy can be differentiated depending on firm specifics. This study uses the foreign investor, intangible asset and patents as firm specifics. The analysts are divided into two groups by firm-specifies(foreign investors ratio of low and high, intangible asset ratio of low and high, patents of acquisition) and also examine the degree of analysts's forecast accuracy over the two groups. and examined the degree of the analysts' forecast accuracy over the two groups. The sample is composed of 460 IPO (Initial Public Offering) firms listed on the KOSDAQ (Korean Securities Dealers Automated Quotations) for the period from 2001 to 2009. The analysts' forecast accuracy is much higher in the group of high foreign investor but is lower in the group of high intangible assets and patents. Also, the group of high foreign investors respectively interacts with group of high intangible assets ratio and group of patents of acquisition. In result, The analysts' forecast accuracy is higher because foreign investor is decreased information asymmetry. This study compares suggests that patents may be helpful for predicting forecast accuracy.

  • PDF

A Scheme for Reducing Load Forecast Error During Weekends Near Typhoon Hit (태풍 발생 인접 주말의 수요예측 오차 감소 방안)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1700-1705
    • /
    • 2009
  • In general, short term load forecasting is based on the periodical load pattern during a day or a week. Therefore, the conventional methods do not expose stable performance to every day during a year. Especially for anomalous weather conditions such as typhoons, the methods have a tendency to show the conspicuous accuracy deterioration. Furthermore, the tendency raises the reliability and stability problems of the conventional load forecast. In this study, a new load forecasting method is proposed in order to increase the accuracy of the forecast result in case of anomalous weather conditions such as typhoons. For irregular weather conditions, the sensitivity between temperature and daily load is used to improve the accuracy of the load forecast. The proposed method was tested with the actual load profiles during 14 years, which shows that the suggested scheme considerably improves the accuracy of the load forecast results.

Earnings Forecasts and Firm Characteristics in the Wholesale and Retail Industries

  • LIM, Seung-Yeon
    • Journal of Distribution Science
    • /
    • v.20 no.12
    • /
    • pp.117-123
    • /
    • 2022
  • Purpose: This study investigates the relationship between earnings forecasts estimated from a cross-sectional earnings forecast model and firm characteristics such as firm size, sales volatility, and earnings volatility. Research design, data and methodology: The association between earnings forecasts and the aforementioned firm characteristics is examined using 214 firm-year observations with analyst following and 848 firm-year observations without analyst following for the period of 2011-2019. I estimate future earnings using a cross-sectional earnings forecast model, and then compare these model-based earnings forecasts with analysts' earnings forecasts in terms of forecast bias and forecast accuracy. The earnings forecast bias and accuracy are regressed on firm size, sales volatility, and earnings volatility. Results: For a sample with analyst following, I find that the model-based earnings forecasts are more accurate as the firm size is larger, whereas the analysts' earnings forecasts are less biased and more accurate as the firm size is larger. However, for a sample without analyst following, I find that the model-based earnings forecasts are more pessimistic and less accurate as firms' past earnings are more volatile. Conclusions: Although model-based earnings forecasts are useful for evaluating firms without analyst following, their accuracy depends on the firms' earnings volatility.

A Time Series-Based Statistical Approach for Trade Turnover Forecasting and Assessing: Evidence from China and Russia

  • DING, Xiao Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 2022
  • Due to the uncertainty in the order of the integrated model, the SARIMA-LSTM model, SARIMA-SVR model, LSTM-SARIMA model, and SVR-SARIMA model are constructed respectively to determine the best-combined model for forecasting the China-Russia trade turnover. Meanwhile, the effect of the order of the combined models on the prediction results is analyzed. Using indicators such as MAPE and RMSE, we compare and evaluate the predictive effects of different models. The results show that the SARIMA-LSTM model combines the SARIMA model's short-term forecasting advantage with the LSTM model's long-term forecasting advantage, which has the highest forecast accuracy of all models and can accurately predict the trend of China-Russia trade turnover in the post-epidemic period. Furthermore, the SARIMA - LSTM model has a higher forecast accuracy than the LSTM-ARIMA model. Nevertheless, the SARIMA-SVR model's forecast accuracy is lower than the SVR-SARIMA model's. As a result, the combined models' order has no bearing on the predicting outcomes for the China-Russia trade turnover time series.

The Effect of Earnings Quality on Financial Analysts' Dividend Forecast Accuracy: Evidence from Korea

  • NAM, Hye-Jeong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2019
  • Dividend policy is an important business decision and is considered a channel to communicate a firm's performance to shareholders. Given the empirical findings that earnings quality significantly affects financial analysts' forecasting activities, it is predicted that higher earnings quality would positively influence forecast accuracy. Specifically, it is expected that financial analysts would forecast dividends more accurately for firms with higher earning quality. Unlike the research on financial analysts' earnings forecasts was heavily conducted, there is little study about financial analysts' dividend forecasts. This paper examines the effect of earnings quality on financial analysts' dividend forecast accuracy. We use a sample of South Korean firms for the period of 2011-2015 for multivariate regression. Earnings quality is measured by accruals quality and performance-adjusted discretionary accruals followed by prior studies. We first compare the accuracy between dividend forecasts and earnings forecasts using t-test and Wilcoxon singed-rank test. It is confirmed that financial analysts' dividend forecasts are more accurate than earnings forecasts in Korea. We find that financial analysts' dividend forecasts are more accurate for firms with higher earnings quality. We also find that the result is still valid after controlling for the accuracy of financial analysts' earnings forecasts. This confirms that earnings quality positively affects financial analysts' dividend forecasts.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

Short-Term Load Forecast for Near Consecutive Holidays Having The Mixed Load Profile Characteristics of Weekdays and Weekends (평일과 주말의 특성이 결합된 연휴전 평일에 대한 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin;Lim, Hyeong-Woo;Park, Hae-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1765-1773
    • /
    • 2012
  • The accuracy of load forecast is very important from the viewpoint of economical power system operation. In general, the weekdays' load demand pattern has the continuous time series characteristics. Therefore, the conventional methods expose stable performance for weekdays. In case of special days or weekends, the load demand pattern has the discontinuous time series characteristics, so forecasting error is relatively high. Especially, weekdays near the thanksgiving day and lunar new year's day have the mixed load profile characteristics of both weekdays and weekends. Therefore, it is difficult to forecast these days by using the existing algorithms. In this study, a new load forecasting method is proposed in order to enhance the accuracy of the forecast result considering the characteristics of weekdays and weekends. The proposed method was tested with these days during last decades, which shows that the suggested method considerably improves the accuracy of the load forecast results.

Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm (서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선)

  • Ji-Young Kim;Ho-Yeop Lee;In-Seon Suh;Da-Jeong Park;Keum-Seok Kang
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.