• Title/Summary/Keyword: Forearm rotation

Search Result 38, Processing Time 0.024 seconds

Measuring hand kinematics in handball's game: A multi-physics simulation

  • Kun, Qian;Sanaa, Al-Kikani;H. Elhosiny, Ali
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2022
  • Handball sport, as its name postulates, is a team sport which highly physical workout. During a handball play, several ball impacts are applied on the hands resulting vibration in the forearm, upper arm, shoulders and in general in whole body. Hand has important role in the handball's game. So, understanding about the dynamics and some issues that improve the stability of the hand is important in the sport engineering field. Ulna and radius are two parallel bones in lower arm of human hand which their ends are located in elbow and wrist joint. The type of the joint provides the capability of rotation of the lower arm. These two bones with their ends conditions in the joints constructs a 4-link frame. The ulna is slightly thinner than radius. So, understanding about hand kinematics in handball's game is an important thing in the engineering field. So, in the current work with the aid of a multi-physics simulation, dynamic stability analysis of the ulna and radius bones will be presented in detail.

Vibration Control of a Robot Manipulator with a Parallel Drive Mechanism (평행구동방식 로봇 조작기의 진동제어)

  • 최승철;하영균;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2015-2025
    • /
    • 1991
  • A long and light-weight forearm of the vertical 2 DOF robot manipulator with a heavy payload driven by parallel drive mechanism is modelled as a Euler-Bernoulli beam with a tip mass subjected to a high speed rotation. Governing equation is obtained by Hamilton's principle and represented as state variable form using the perturbed variables which describe the perturbed errors at the manipulator's final configuration. Digitial optimal control and observer theory are used to suppress the forearm vibration and control the positions of the joint angles with measured/estimated state feedback. Computer simulations and experimental results are obtained and compared each other.

Anterior Dislocation of the Radial Head Combined with Plastic Deformity of the Ulnar Shaft in an Adult: A Case Report

  • Moon, Sang Won;Kim, Youngbok;Kim, Young-Chang;Kim, Ji-Wan;Yoon, Taiyeon;Kim, Seung-Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • A 25-year-old woman presented to the emergency room with a painful and swollen right forearm. She had just sustained an injury from an accident during which her arm was tightly wound by a rope as she was lowering a net from a fishing boat. Before being released, her arm was rigidly trapped in the rope for approximately ten minutes. Radiographs revealed anterior dislocation of the radial head that was accompanied by plastic deformation of the proximal ulna, manifested as a reversal of the proximal dorsal angulation of the ulna (PUDA); suggested a Monteggia equivalent fracture. With the patient under general anesthesia, we reduced the radial head by posterior compression at $90^{\circ}$ of elbow flexion and at neutral rotation of the forearm. However, the reduction was easily lost and the elbow re-dislocated with even slight supination or extension of the arm. After the osteotomy of the ulnar deformity to restore the PUDA to normal, the reduction remained stable even with manipulation of the arm. We found that the patient could exercise a full range of motion without pain at the 3-month follow-up, and neither residual instability nor degenerative changes were observed at the final 3-year follow-up.

Topographical measurement of the attachments of the central band of the interosseous membrane on interosseous crests of the radius and ulna

  • Jang, Suk-Hwan;Kim, Kyung-Whan;Jang, Hyo Seok;Kim, Yeong-Seok;Kim, Hojin;Kim, Youngbok
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.4
    • /
    • pp.253-260
    • /
    • 2021
  • Background: To suggest a reasonable isometric point based on the anatomical consistency of interosseous membrane (IOM) attachment in association with topographic characteristics of the interosseous crests, the footprints of the central band (CB) of the IOM on the radial and ulnar interosseous crests (RIC and UIC) were measured. Methods: We measured the distance from the CB footprints from each apex of both interosseous crests in 14 cadavers and the angles between the forearm axis of rotation (AOR) and the distal slopes of the RIC and UIC in 33 volunteers. Results: The CB footprints lay on the downslope of both interosseous crests with its upper margin on average 3-mm proximal from the RIC's apex consistently in the radial length, showing normality (p>0.05), and on average 16-mm distal from the UIC's apex on the ulna without satisfying normality (p<0.05). The average angle between the UIC's distal slope and the AOR was 1.3°, and the RIC's distal slope to the AOR was 14.0°, satisfying the normality tests (p>0.05), and there was no side-to-side difference in both forearms (p<0.05). Conclusions: The CB attached to the downslope just distal to the RIC's apex constrains the radius to the UIC that coincides with the AOR of the forearm circumduction, maintaining itself both isometrically and isotonically.

Effect of Increase in Occlusal Vertical Dimension on Appendage Muscle Strength (수직적 교합고경의 증가가 사지 근력에 미치는 영향에 관한 연구)

  • Ahn, Su-Jin;Lee, Richard Sung-Bok;Lee, Suk-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.169-178
    • /
    • 2010
  • Objective. This study was conducted to observe the effect on appendage muscle strength according to increase in occlusal vertical dimension. Materials and methods. Ten males with a mean age of 21 were selected. The tested occlusal splints were made at the position of increased occlusal vertical dimension of 2mm,3.5mm and 5mm from the intercuspal position. Before and after wearing occlusal splints, the appendage muscle strength were tested by Cybex II dynamometer (Lumex Inc., Ronkonkoma, NY, USA). Results. Statistical analysis using the paired t-test revealed significant differences for flexion and extension of the hip, pronation of the forearm, internal rotation of the shoulder, external and internal rotation of the knee, and dorsiflexion and plantarflexion of the ankle (p<0.05). Conclusions. As the result of this study, we conclude that when occlusal vertical dimension was increased, most of mean muscular strength values were increased. Especially at the position of 3.5mm increased vertical dimension displayed the highest mean muscular strength value than other positions.

A Study on the Control System of Myoelectric Hand Prosthesis (근전의수의 제어시스템에 관한 연구)

  • Choi, Gi-Won;Chu, Jun-Uk;Choe, Gyu-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.

Kinematic Comparative Analysis of Short Turns between Skilled and Unskilled Alpine Skiers

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • Objective: The purpose of this study is to provide a better understanding of short turn mechanism by describing short turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (ski-hip angle, ski-shoulder twist angle, pole checking angle, the center of gravity (CG) displacement, trunk forward lean angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for short turns. Results: There was no difference in a ski-hip twist angle. The ski-shoulder twist angle was large at the up-start point while a pole-checking angle was high at the down-end point in skilled skiers. Concerning the horizontal displacement of CG, skilled skiers were positioned on the right side at the upstart point. No significant difference was observed in the trunk forward lean angle. Conclusion: According to the ski-shoulder twist angle and CG horizontal displacement results, the upper body should be kept leant toward the pole. In addition, big turns should be made via edging and angulation. During pole checking, the hand holding the pole should be thrown and released toward a vector direction of the forearm.

Study on Oneself Developed to Apparatus Position of Measurement of BMD in the Distal Radius (자체 개발한 보조기구로 원위 요골의 골밀도 측정 자세 연구)

  • Han, Man-Seok;Song, Jae-Yong;Lee, Hyun-Kuk;Yu, Se-Jong;Kim, Yong-Kyun
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.419-426
    • /
    • 2009
  • Purpose : The aim of this study was to evaluate the difference of bone mineral density according to distal radius rotation and to develop the supporting tool to measure rotation angles. Materials and Methods : CT scanning and the measurement of BMD by DXA of the appropriate position of the forearm were performed on 20 males. Twenty healthy volunteers without any history of operations, anomalies, or trauma were enrolled. The CT scan was used to evaluate the cross sectional structure and the rotation angle on the horizontal plane of the distal radius. The rotational angle was measured by the m-view program on the PACS monitor. The DXA was used in 20 dried radii of cadaveric specimens in pronation and supination with five and ten degrees, respectively, including a neutral position (zero degrees) to evaluate the changes of BMD according to the rotation. Results : The mean rotation angle of the distal radius on CT was 7.4 degrees of supination in 16 cases (80%), 3.3 degrees of pronation in three cases (15%), and zero degree of neutral in one case (9%), respectively. The total average rotation angle in 20 people was 5.4 degrees of supination. In the cadaveric study, the BMD of the distal radius was different according to the rotational angles. The lowest BMD was obtained at 3.3 degrees of supination. Conclusion : In the case of the measurement of BMD in the distal radius with a neutral position, the rotational angle of the distal radius is close to supination. Pronation is needed for the constant measurement of BMD in the distal radius with the rotation angle measuring at the lowest BMD and about five degrees of pronation of the distal radius is recommended.

  • PDF

The Usability of Various Flaps for Hindfoot Reconstruction (다양한 피판술을 이용한 후족부 연부조직의 결손)

  • Lee, Jung-Hwan;Lee, Jong-Wook;Koh, Jang-Hyu;Seo, Dong-Kook;Choi, Jai-Koo;Oh, Suk-Jun;Jang, Young-Chul
    • Archives of Plastic Surgery
    • /
    • v.37 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Purpose: Anatomically, the foot is provided with insufficient blood supply and is relatively vulnerable to venous congestion compared to other parts of the body. Soft tissue defects are more difficult to manage and palliative treatments can cause hyperkeratosis or ulcer formation, which subsequently requires repeated surgeries. For weight bearing area such as the heel, not only is it important to provide wound coverage but also to restore the protective senses. In these cases, application of flaps for hind foot reconstruction is widely recognized as an effective treatment. In this study, we report the cases of soft tissue reconstruction for which various types of flaps were used to produce good results in both functional and cosmetic aspects. Methods: Data from 37 cases of hind foot operation utilizing flaps performed between from June 2000 to June 2008 were analyzed. Results: Burn related factors were the most common cause of defects, accounting for 19 cases. In addition, chronic ulceration was responsible for 8 cases and so forth. Types of flaps used for the operations, listed in descending order are radial forearm free flap (18), medial plantar island flap (6), rotation flap (5), sural island flap (3), anterolateral thigh free flap (2), lattisimus dorsi muscular flap (2), and contra lateral medial plantar free flap (1). 37 cases were successful, but 8 cases required skin graft due to partial necrosis in small areas. Conclusion : Hind foot reconstruction surgeries that utilize flaps are advantageous in protecting the internal structure, restoring functions, and achieving proper contour aesthetically. Generally, medial plantar skin is preferred because of the anatomical characteristics of the foot (e.g. fibrous septa, soft tissue for cushion). However alternative methods must be applied for defects larger than medial plantar skin and cases in which injuries exist in the flap donor / recipient site (scars in the vicinity of the wound, combined vascular injury). We used various types of flaps including radial forearm neurosensory free flap in order to reconstruct hind foot defects, and report good results in both functional and cosmetic aspects.

Biceps Load Test: A Test of SLAP lesion in the Recurrent Anterior Dislocation of the Shoulder (이두건 부하 검사(Biceps Load Test): 견관절 재발성 전방 탈구시 SLAP 병변 진단의 새로운 검사방법)

  • Kim Seung-Ho;Ha Kwon-Ick;Han Kye-Young
    • Clinics in Shoulder and Elbow
    • /
    • v.1 no.1
    • /
    • pp.78-82
    • /
    • 1998
  • The following will describe a method of evaluating the SLAP lesion in the recurrent anterior dislocation of the shoulder. We have named it the biceps load test. The biceps load test is performed with the patient in the supine position and the arm to be examined is abducted 90/sup°/, and the forearm is in the supinated position. First, the anterior apprehension test is performed. When the patient become apprehensive, the patient is allowed active flexion of the elbow, while the examiner resists elbow flexion. If the apprehension is relieved or diminished, the test is negative. If aggravated or unchanged, the test is positive. A prospective study was performed, in which 75 patients who were diagnosed as having recurrent unilateral anterior instability of the shoulder underwent the biceps load test and arthroscopic examination. The biceps load test showed negative results in 64 of these patients, of which the superior labral-biceps complex was intact'in 63 cases and only I shoulder revealed a type n SLAP lesion. E]even patients with a positive test were confirmed to have type n SLAP lesions. A positive biceps load test represents an unstable SLAP lesion in a patient with recurrent anterior dislocation of the shoulder. The biceps load test is a reliable test for evaluating the SLAP lesion in the recurrent anterior dislocation of the shoulder(sensitivity: ,9] .7%, specificity: 100%, positive predictive value: 1.00 and negative predictive value: 0.98). Biceps contraction increases the torsional rigidity ?of the glenohumeral joint and long head of biceps tendan act as internal rotator of the shoulder in the abducted and externally rotated position. These stabilize the shoulder in abduction and external rotation position in the biceps load test.

  • PDF