• Title/Summary/Keyword: Forced-Convection

Search Result 299, Processing Time 0.027 seconds

CHARACTERISTICS OF THE FLOW AND HEAT TRANSFER AROUND A WAVY CYLINDER (삼차원 원형주상체의 축방향 직경변화가 열.유동장에 미치는 영향)

  • Lee, Chang-Yeol;Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.131-136
    • /
    • 2008
  • Three-dimensional characteristics of fluid flow and heat transfer around a wavy circular cylinder having sinusoidal variation in cross sectional area along the spanwise direction are numerically investigated using the immersed boundary method. The three different wavelengths of ${\pi}/4$, ${\pi}/3$ and ${\pi}/2$ and at the fixed wavy amplitude of 0.1 have been considered to investigate the effects of waviness on especially the forced convection heat transfer around a wavy cylinder when the Reynolds and Prandtl numbers are 300 and 0.71, respectively. The present computational results for a wavy cylinder are compared with those for a smooth cylinder. The time- and total surface-averaged Nusselt number for a wavy cylinder with is larger than that for a smooth cylinder, whereas that with ${\lambda}={\pi}/4$ and ${\pi}/3$ is smaller than that for a smooth cylinder. However, because the surface area exposed to heat transfer for a wavy cylinder is larger than that for a smooth cylinder, the total heat transfer rate for a wavy cylinder with different wavelengths of ${\lambda}={\pi}/4$, ${\pi}/3$ and ${\pi}/2$ is larger than that for a smooth cylinder.

  • PDF

Heat transfer characteristics of R - 407C condensing inside smooth horizontal tubes (냉매 R-407c의 수평평골 응축관내 열전달특성에 관한 연구)

  • 오후규;문정욱;노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.144-156
    • /
    • 1997
  • Experimental results for forced convection heat transfer of pure refrigerant and nonrefrigerant mixtures during condensing inside horizontal smooth tubes, double pipe heat exchanger of 7.5 mm ID and 4 000 mm long inside tube, are presented. Pure refrigerant R - 22 and R - 407 c, the mixture of R - 32 + R - 125 + R - 134a (23/25/52, wt %) are used as the test fluids. The ranges of parameters are $114.3{\sim}267.1 kg/(m^2 {\cdot} s)$ of mass velocity, <0$\sim$1.0 of quality. The vapor pressure, vapor temperature and tube wall temperature were measured. Using these data, the local and average heat transfer coefficients for the condensation are obtained. At the same given experimental conditions, the condensation heat transfer coefficients for NARMs R - 407c were lower than those for the pure refrigerant of R - 22. Local heat transfer characteristics for R - 407c were different from pure refrigerant R - 22. The condensaheat transfer coefficients for R - 407c and R - 22 increased with mass velocity. Based on the data a prediction method was presented for the calculation of dimensionless average heat transfer coefficient.

  • PDF

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

A Study on Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 연구)

  • Jung Ji Won;Choi Myung-Ryul;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.224-231
    • /
    • 2005
  • The present study investigates flow characteristics in an optical disc drive (ODD). Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in a personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity component and velocity spectrum are obtained using the laser Doppler anemometry (LDA), and the flow patterns induced by rotating disc in the ODD are calculated by a commercial finite volume method at the same time. The results show that the front holes reduce flow-induced noise and the position of pickup body only affects flow near the window. Furthermore, it is possible for cooling of heat sources in the drive through measuring the flow fields under the tray. In addition, the numerical results are well matched up to the experimental results, therefore, the validation of the numerical results can be achieved. From the validation of numerical results, it is possible to predict the flow characteristics of the region where it is unable to conduct the experiment.

A Study on the Effect of Scale Roughness attached Surface of Heat Exchangers (표면에 부착되는 스케일의 조도가 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Min-Soo;Choi, Nag-Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.235-242
    • /
    • 2010
  • An experimental investigation has been conducted to clarify roughness effects of geothermal water scale deposited onto a heating surface upon its forced convection heat transfer characteristics. Examined was a circular cylinder, on which particles of silica scale having five different sizes are uniformly distributed. The Reynolds number was varied from 13000 through 50000. Local and mean heat transfer characteristics were measured as functions of particle size and Reynolds number. Subsequently the mean fouling resistance was estimated from those results, and its characteristics are clarified. It was found that the heat transfer of cylinders greatly varies with the fouling of geothermal water scale, especially its scale height. Further, the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.

Air Pumps for Polymer Electrolyte Membrane Fuel Cells (휴대용 고분자전해질막 연료전지의 산화제 공급을 위한 전기침투 현상 기반의 공기펌프의 개발)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.715-720
    • /
    • 2010
  • We propose an electroosmosis-based air delivery scheme for polymer electrolyte fuel cells and experimentally investigate its feasibility. An electroosmotic pump under a low-frequency AC electric field is used to displace initially a volume of pump working liquids. This working liquid is then pumped into a space enclosed by a flexible membrane and the movement of the membrane delivers air to a fuel cell. We successfully demonstrated the operation of a forced-convection fuel cell using this technique. In this preliminary study, however, the power consumption of the pump exceeds the power generated by the fuel cell. We conclude this paper with a discussion of several ways to reduce the pump-to-fuel cell power ratio.

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (II) - The Effect of the Reynolds Number (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각특성에 관한 연구(II) -레이놀즈 수의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.509-517
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To estimate the thermal performance of the heat-generating components arranged by $5\times11$ in channel flow, three variables are used: the inlet velocity, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. The experimental result is in a good agreement with the numerical analysis. The heat transfer coefficient increases as the Reynolds number increases, while the thermal wake function calculated for each row decreases as the Reynolds number increases. In addition, it is found that Nu-Re correlation equation is Identical to the previous studies, and the empirical correlation equation between the thermal wake function and Re is presented.

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF

Effects of 27.12 MHz Radio Frequency on the Rapid and Uniform Tempering of Cylindrical Frozen Pork Loin (Longissimus thoracis et lumborum)

  • Choi, Eun Ji;Park, Hae Woong;Yang, Hui Seon;Kim, Jin Se;Chun, Ho Hyun
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.518-528
    • /
    • 2017
  • Quality characteristics of frozen cylindrical pork loin were evaluated following different tempering methods: 27.12 MHz curved-electrode radio frequency (RF) at 1000 and 1500 W, and forced-air convection (FC) or water immersion (WI) at $4^{\circ}C$ and $20^{\circ}C$. The developed RF tempering system with the newly designed curved-electrode achieved relatively uniform tempering compared to a parallel-plate RF system. FC tempering at $4^{\circ}C$ was the most time-consuming process, whereas 1500 W RF was the shortest. Pork sample drip loss, water holding capacity, color, and microbiological quality declined after WI tempering at $20^{\circ}C$. Conversely, RF tempering yielded minimal sample changes in drip loss, microstructure, color, and total aerobic bacteria counts, along with relatively uniform internal sample temperature distributions compared to those of the other tempering treatments. These results indicate that curved-electrode RF tempering could be used to provide rapid defrosting with minimal quality deterioration of cylindrical frozen meat block products.

Development of Multi-point Heat Flux Measurement for Steel Quenching (강재 열처리용 다점 열유속 측정 기술 개발)

  • Lee, Jungho;Oh, Dong-Wook;Do, Kyu Hyung;Kim, Tae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.