DOI QR코드

DOI QR Code

Effects of 27.12 MHz Radio Frequency on the Rapid and Uniform Tempering of Cylindrical Frozen Pork Loin (Longissimus thoracis et lumborum)

  • Choi, Eun Ji (Research and Development Division, World Institute of Kimchi) ;
  • Park, Hae Woong (Research and Development Division, World Institute of Kimchi) ;
  • Yang, Hui Seon (Research and Development Division, World Institute of Kimchi) ;
  • Kim, Jin Se (Postharvest Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Chun, Ho Hyun (Research and Development Division, World Institute of Kimchi)
  • Received : 2017.06.22
  • Accepted : 2017.07.10
  • Published : 2017.08.31

Abstract

Quality characteristics of frozen cylindrical pork loin were evaluated following different tempering methods: 27.12 MHz curved-electrode radio frequency (RF) at 1000 and 1500 W, and forced-air convection (FC) or water immersion (WI) at $4^{\circ}C$ and $20^{\circ}C$. The developed RF tempering system with the newly designed curved-electrode achieved relatively uniform tempering compared to a parallel-plate RF system. FC tempering at $4^{\circ}C$ was the most time-consuming process, whereas 1500 W RF was the shortest. Pork sample drip loss, water holding capacity, color, and microbiological quality declined after WI tempering at $20^{\circ}C$. Conversely, RF tempering yielded minimal sample changes in drip loss, microstructure, color, and total aerobic bacteria counts, along with relatively uniform internal sample temperature distributions compared to those of the other tempering treatments. These results indicate that curved-electrode RF tempering could be used to provide rapid defrosting with minimal quality deterioration of cylindrical frozen meat block products.

Keywords

References

  1. Ali, S., Zhang, W., Rajput, N., Khan, M. A., Li, C. B., and Zhou, G. H. (2015) Effect of multiple freeze-thaw cycles on the quality of chicken breast meat. Food Chem. 173, 808-814. https://doi.org/10.1016/j.foodchem.2014.09.095
  2. Anese, M., Manzocco, L., Panozzo, A., Beraldo, P., Foschia, M., and Nicoli, M. C. (2012) Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res. Int. 46, 50-54. https://doi.org/10.1016/j.foodres.2011.11.025
  3. AOAC. (2007) Official methods of analysis. 18th ed, Association of Official Analytical Chemists, Washington, DC.
  4. Beauchamp, C. S., Byelashov, O. A., Geornaras, I., Kendall, P. A., Scanga, J. A., Belk, K. E., Smith, G. C., Sofos, J. N. (2010) Fate of Listeria monocytogenes during freezing, thawing and home storage of frankfurters. Food Microbiol. 27, 144-149. https://doi.org/10.1016/j.fm.2009.09.007
  5. Bedane, T. F., Chen, L., Marra, F., and Wang, S. (2017) Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt. J. Food Eng. 201, 17-25. https://doi.org/10.1016/j.jfoodeng.2017.01.010
  6. Boonsumrej, S., Chaiwanichsiri, S., Tantratian, S., Suzuki, T., and Takai, R. (2007) Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. J. Food Eng. 80, 292-299. https://doi.org/10.1016/j.jfoodeng.2006.04.059
  7. Choi, E. J., Park, H. W., Chung, Y. B., Park, S. H., Kim, J. S., and Chun H. H. (2017) Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion. Meat Sci. 124, 69-76. https://doi.org/10.1016/j.meatsci.2016.11.003
  8. Choi, M. J., Min, S. G., and Hong, G. P. (2016) Effects of pressure- shift freezing conditions on the quality characteristics and histological changes of pork. LWT-Food Sci. Technol. 67, 194-199. https://doi.org/10.1016/j.lwt.2015.11.054
  9. Engel, R. E., Adams, C. E., and Crawford, L. M. (1990) Foodborne listeriosis: risk from meat and poultry. Food Control 1, 27-31. https://doi.org/10.1016/0956-7135(90)90117-U
  10. Farag, K. W., Duggan, E., Morgan, D. J., Cronin, D. A., and Lyng, J. G. (2009) A comparison of conventional and radio frequency defrosting of lean beef meats: Effects on water binding characteristics. Meat Sci. 83, 278-284. https://doi.org/10.1016/j.meatsci.2009.05.010
  11. Farag, K. W., Lyng, J. G., Morgan, D. J., and Cronin, D. A. (2008) Dielectric and thermophysical properties of different beef meat blends over a temperature range of -18 to +$10^{\circ}C$. Meat Sci. 79, 740-747. https://doi.org/10.1016/j.meatsci.2007.11.005
  12. Farag, K. W., Lyng, J. G., Morgan, D. J., and Cronin, D. A. (2011) A comparison of conventional and radio frequency thawing of beef meats: effects on product temperature distribution. Food Bioprocess Technol. 4, 1128-1136. https://doi.org/10.1007/s11947-009-0205-z
  13. Farouk, M. M. and Swan, J.E. (1998) Effect of muscle condition before freezing and simulated chemical changes during frozen storage on the pH and colour of beef. Meat Sci. 50, 245-256. https://doi.org/10.1016/S0309-1740(98)00036-9
  14. Gorska-Horczyczak, E., Horczyczak, M., Guzek, D., Wojtasik-Kalinowska, I., and Wierzbicka, A. (2017) Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork. Food Control 73, 237-244. https://doi.org/10.1016/j.foodcont.2016.08.010
  15. Guan, D., Tang, J., and Awuah, G. (2015) Temperature measurement in radio-frequency applications. In: Radio-frequency heating in food processing principles and applications. Awuah, G. B., Ramaswamy, H. S., and Tang, J. (ed) Boca Raton: CRC Press, pp. 31-40.
  16. He, X., Liu, R., Nirasawa, S., Zheng, D., and Liu, H. (2013) Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of frozen pork tenderloin meat. J. Food Eng. 115, 245-250. https://doi.org/10.1016/j.jfoodeng.2012.10.023
  17. Huff-Lonergan, E. and Lonergan, S. M. (2005) Mechanisms of water-holding capacity of meat: The role of post-mortem biochemical and structural changes. Meat Sci. 71, 194-204. https://doi.org/10.1016/j.meatsci.2005.04.022
  18. Ibanez, C., Quintanilla, L., Irigoyen, A., Garcia-Jalon, I., Cid, C., Astiasaran, I., Bello, J. (1995) Partial replacement of sodium chloride with potassium chloride in dry fermented sausage: Influence on carbohydrate fermentation and the nitrosation process. Meat Sci. 40, 45-53. https://doi.org/10.1016/0309-1740(94)00026-4
  19. Jia, G., He, X., Nirasawa, S., Tatsumi, E., Liu, H., and Liu, H. (2017) Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J. Food Eng. 204, 18-26. https://doi.org/10.1016/j.jfoodeng.2017.01.020
  20. Kubow, S. (1992) Routes of formation and toxic consequences of lipid oxidation products in foods. Free Radical Bio. Med. 12, 63-81. https://doi.org/10.1016/0891-5849(92)90059-P
  21. Kuttinarayanan, P. and Ramanathan, R. (2010) Effects of low-dose irradiation and electrical stimulation on quality parameters of beef longissimus from Bos indicus $\times$ Bos Taurus bulls. Int. J. Food Sci. Technol. 45, 1009-1015. https://doi.org/10.1111/j.1365-2621.2010.02229.x
  22. Lan, Y., Shang, Y., Song, Y., and Dong, Q. (2016) Changes in the quality of superchilled rabbit meat stored at different temperatures. Meat Sci. 117, 173-181. https://doi.org/10.1016/j.meatsci.2016.02.017
  23. Laycock, L., Piyasena, P., and Mittal, G. S. (2003) Radio frequency cooking of ground, comminuted and muscle meat products. Meat Sci. 65, 959-965. https://doi.org/10.1016/S0309-1740(02)00311-X
  24. Leygonie, C., Britz, T. J., and Hoffman, L. C. (2012) Meat quality comparison between fresh and frozen/thawed ostrich M. iliofibularis. Meat Sci. 91, 364-368. https://doi.org/10.1016/j.meatsci.2012.02.020
  25. Lien, R., Hunt, M. C., Anderson, S., Kropf, D. H., Loughin, T. M., and Dikeman, M. E. (2002) Effects of endpoint temperature on the internal color of pork patties of different myoglobin form, initial cooking state, and quality. J. Food Sci. 67, 1011-1015. https://doi.org/10.1111/j.1365-2621.2002.tb09445.x
  26. Lin, T., Wang, J. J., Li, J. B., Liao, C., Pan, Y. J., and Zhao, Y. (2013) Use of acidic electrolyzed water ice for preserving the quality of shrimp. J. Agr. Food Chem. 61, 8695-8702. https://doi.org/10.1021/jf4019933
  27. Llave, Y., Terada, Y., Fukuoka, M., and Sakai, N. (2014) Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies. J. Food Eng. 139, 1-9. https://doi.org/10.1016/j.jfoodeng.2014.04.012
  28. Mousakhani-Ganjeh, A., Hamdami, N., and Soltanizadeh, N. (2015) Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). J Food Eng. 156, 39-44. https://doi.org/10.1016/j.jfoodeng.2015.02.004
  29. O'Sullivan, M. G., Byrne, D. V., Martens, H., Gidskehaug, L. H., Andersen, H. J., and Martens, M. (2003) Evaluation of pork colour: prediction of visual sensory quality of meat from instrumental and computer vision methods of colour analysis. Meat Sci. 65, 909-918. https://doi.org/10.1016/S0309-1740(02)00298-X
  30. Rincon, A. M. and Singh, R. K. (2016) Inactivation of Shiga toxin-producing and non-pathogenic Escherichia coli in non-intact steaks cooked in a radio frequency oven. Food Control 62, 390-396. https://doi.org/10.1016/j.foodcont.2015.11.021
  31. Rincon, A. M., Singh, R. K., and Stelzleni, A. M. (2015) Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a radio frequency oven. LWT-Food Sci. Technol. 64, 1323-1328. https://doi.org/10.1016/j.lwt.2015.07.017
  32. Rowe, L. J., Maddock, K. R., Lonergan, S. M., and Huff-Lonergan, E. (2004) Influence of early post-mortem protein oxidation on beef quality. J. Anim. Sci. 82, 785-793. https://doi.org/10.2527/2004.823785x
  33. Sanchez-Valencia, J., Sanchez-Alonso, I., Martinez, I., and Careche, M. (2014) Estimation of frozen storage time or temperature by kinetic modelling of the Kramer shear resistance and water holding capacity (WHC) of hake (Merluccius merluccius L.) muscle. J. Food Eng. 120, 37-43. https://doi.org/10.1016/j.jfoodeng.2013.07.012
  34. Sriket, P., Benjakul, S., Visessanguan, W., and Kijroongrojana, K. (2007) Comparative studies on the effect of the freeze-thawing precess on the physicochemical properties and microstructures of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) muscle. Food Chem. 104, 113-121. https://doi.org/10.1016/j.foodchem.2006.11.004
  35. Taher, B. J. and Farid, M. M. (2001) Cyclic microwave thawing of frozen meat: experimental and theoretical investigation. Chem. Eng. Process. 40, 379-389. https://doi.org/10.1016/S0255-2701(01)00118-0
  36. Uyar, R., Erdogdu, F., and Marra, F. (2014) Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: A computational study. Food Bioprod. Process. 92, 243-251. https://doi.org/10.1016/j.fbp.2013.12.005
  37. Vieira, C., Diaz, M. T., Martinez, B., and Garcia-Cachan, M. D. (2009) Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Sci. 83, 398-404. https://doi.org/10.1016/j.meatsci.2009.06.013
  38. Wen, X., Hu, R., Zhao, J. H., Peng, Y., and Ni, Y. Y. (2015) Evaluation of the effects of different thawing methods on texture, colour and ascorbic acid retention of frozen hami melon (Cucumis melo var. saccharinus). Int. J. Food Sci. Technol. 50, 1116-1122. https://doi.org/10.1111/ijfs.12755
  39. Xia, X., Kong, B., Liu, J., Diao, X., and Liu, Q. (2012) Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle. LWT-Food Sci. Technol. 46, 280-286. https://doi.org/10.1016/j.lwt.2011.09.018
  40. Xia, X., Kong, B., Liu, Q., and Liu, J. (2009) Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles. Meat Sci. 83, 239-245. https://doi.org/10.1016/j.meatsci.2009.05.003
  41. Zang, J., Xu, Y., Xia, W., and Jiang, Q. (2017) The impact of desmin on texture and water-holding capacity of ice-stored grass carp (Ctenopharyngodon idella) fillet. Int. J. Food Sci. Technol. 52, 464-471. https://doi.org/10.1111/ijfs.13302

Cited by

  1. Effect of Different Storage-Temperature Combinations on Longissimus dorsi Quality upon Sous-vide Processing of Frozen/Thawed Pork vol.39, pp.2, 2019, https://doi.org/10.5851/kosfa.2019.e19