• Title/Summary/Keyword: Forced swim test

Search Result 34, Processing Time 0.021 seconds

Effect of Valeriana fauriei Extract on the Neurodevelopmental Proteins Expression and Behavioral Patterns in Maternal Immune Activation Animal Model (쥐오줌풀 추출물이 MIA동물모델에서의 신경발달 단백질의 발현과 행동증상에 미치는 영향)

  • Won, Hansol;Kim, Young Ock;Lee, Hwayoung;Im, Jiyun;Lee, Sanghyun;Cho, Ik Hyun;Lee, Sang Won;Park, Chun Geun;Kim, Hyung Ki;Kwon, Jun Tack;Kim, Hak Jae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.5
    • /
    • pp.341-350
    • /
    • 2016
  • Background: Prenatal exposure to infectious and/or inflammatory insults can increase the risk of developing neuropsychiatric disorder such as bipolar disorder, autism, and schizophrenia later in life. We investigated whether Valeriana fauriei (VF) treatment alleviates prepulse inhibition (PPI) deficits and social interaction impairment induced by maternal immune activation (MIA). Methods and Results: Pregnant mice were exposed to polyriboinosinic-polyribocytidilic acid (5 mg/kg, viral infection mimic) on gestational day 9. The adolescent offspring received daily oral treatment with VF (100 mg/kg) and injections of clozapine (5 mg/kg) for 30 days starting on the postnatal day 35. The effects of VF extract treatment on behavioral activity impairment and protein expression were investigated using the PPI analysis, forced swim test (FST), open field test (OFT), social interaction test (SIT), and immunohistochemistry. The MIA-induced offspring showed deficits in the PPI, FST, OFT, and SIT compared to their non MIA-induced counterparts. Treatment with the VF extract significantly recovered the sensorimotor gating deficits and partially recovered the aggressive behavior observed in the SIT. The VF extract also reversed the downregulation of protein expression induced by MIA in the medial prefrontal cortex. Conclusions: Our results provide initial evidence of the fact that the VF extract could reverse MIA-induced behavioral impairment and prevent neurodevelopmental disorders such as schizophrenia.

Neuro-inflammation induced by restraint stress causes impairs neurobehavior in mice (스트레스 유발 마우스모델에서 뇌염증 및 신경행동 장애 변화)

  • Oh, Tae woo;Do, Hyun Ju;Kim, Kwang-Youn;Kim, Young Woo;Lee, Byung Wook;Ma, Jin Yeul;Park, Kwang Il
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.483-497
    • /
    • 2017
  • Background : Behavioral stress has been suggested as one of the significant factors that is able to disrupt physiological systems and cause depression as well as changes in various body systems. The stressful events can alter cognition, learning, memory and emotional responses, resulting in mental disorders such as depression and anxiety. Results : We used a restraint stress model to evaluate the alteration of behavior and stress-related blood parameter. The animals were randomly divided into two groups of five animals each group. Furthermore, we assessed the change of body weight to evaluate the locomotor activity as well as status of emotional and anxiety in mice. After 7 days of restraint stress, the body weight had significantly decreased in the restraint stress group compared with the control group. We also observed stress-associated behavioral alterations, as there was a significant decrease in open field and forced swim test, whereas the immobilization time was significantly increased in the stress group compared to the control group. We observed the morphological changes of neuronal death and microglia by immunohistochemistry and western blot. In our study restraint stress did not cause change in neuronal cell density in the frontal cortex and CA1 hippocampus region, but there was a trend for an increased COX-2 and iNOS protein expression and microglia (CD11b) in brain, which is restraint stress. Conclusion : Our study, there were significant alterations observed in the behavioral studies. We found that mice undergoing restraint stress changed behavior, confirming the increased expression of inflammatory factors in the brain.

Antidepressant effects of capsaicin in rats with chronic unpredictable mild stress-induced depression (만성 스트레스로 유발된 우울증 쥐 모델에서 캡사이신의 항우울 효과)

  • Jae Ock, Lim;Min Ji, Kim;Jun Beom, Bae;Chan Hyeok, Jeon;Jae Hyeon, Han;Tae Hyeok, Sim;Youn Jung, Kim
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.1
    • /
    • pp.280-320
    • /
    • 2023
  • Purpose: This study was conducted to assess the antidepressant effects of capsaicin in chronic depressive rats and elucidate the mechanism underlying its effects. Methods: Male Wistar rats (280~320 g, 8 weeks of age) were subjected to depression induced by chronic unpredictable mild stresses. The rats were exposed to 8 kinds of stresses for 8 weeks. In the last 2 weeks, fluoxetine or capsaicin was injected subcutaneously. The dose of fluoxetine was 10 mg/kg (body weight), while the doses of capsaicin consisted of low (1 mg/kg), middle (5 mg/kg), and high (10 mg/kg). The forced swim test (FST) was conducted to evaluate the immobility time of rats. The immobility time indicates despair, one of symptoms of depression. The change of tryptophan hydroxylase (TPH) in the dorsal raphe was investigated using immunohistochemistry. In the hippocampus cornu ammonis (CA) 1 and 3, glucocorticoid receptor (GR) expression was measured. Results: The immobility time in the FST was significantly lower (p < .05) in the low-dose (M = 32.40 ± 13.41 seconds) and middle-dose (M = 28.48 ± 19.57 seconds) groups than in the non-treated depressive rats (M = 90.19 ± 45.34 seconds). The amount of TPH in the dorsal raphe was significantly higher (p < .05) in the middle-dose (M = 249.17 ± 35.02) and high-dose (M = 251.0 ± 56.85) groups than in the non-treated depressive rats (M = 159.78 ± 41.16). However, GR expression in the hippocampus CA1 and CA3 did not show significant differences between the non-treated depressive rats and the capsaicin-injected rats. Conclusion: This study suggests that capsaicin produces an antidepressant-like effect on chronic unpredictable mild stress-induced depression in rats via the serotonin biosynthesis pathway.

Effects of Goat Milk and Fermented Goat Milk on Reproductive Function and Stamina of the Male Rodent (산양유 및 산양유 발효유가 웅성 설치류의 생식기능과 지구력에 미치는 영향에 관한 연구)

  • Im, Kyung-Soon;Kang, Jae-Ku;Choi, Ki-Myung;Pae, Chang-Joon;Joh, Woo-Jea
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.4
    • /
    • pp.373-380
    • /
    • 2000
  • Objective: The purpose of this study was to evaluate effects of goat milk and fermented goat milk on reproductive function and stamina of male rodent. Methods: Experiment I: Male ICR mouse was divided into four groups. Group 1 none-treated control; Group 2 received saline; Group 3 received cow milk 10 ml/kg per day for 15 days; Group 4 received goat milk 10 ml/kg per day for 15 days. The cauda epididymal sperm motility and testicular sperm production were investigated. Experiment II: Male SD rat was divided into three groups. Group 1 received saline; Group 2 received goat milk 10 ml/kg per day for 28 days; Group 3 received fermented goat milk 10 ml/kg per day for 28 days. The cauda epididymal sperm motility and testicular sperm production were also investigated. The concentration of testosterone in serum at 1 and 3 weeks after treatment was determined using Immulite 2000 kit. Testes, epididymis, prostate, and seminal vesicle were weighed. Experiment III: Male ICR mouse was divided into four groups. Group 1 none-treated control; Group 2 received saline; Group 3 received goat milk 10 ml/kg per day for 4 weeks; Group 4 received fermented goat milk 10 ml/kg per day for 4 weeks. After treatment, the mouse was forced to swim to test for stamina. Results: In Experiment I, the cauda epididymal sperm motility after in vitro culture for 1 or 3 h was significantly (p<0.05) higher in cow milk and goat milk than in the control and saline. There was no significant difference in the cauda epidymal sperm motility between cow and goat milk. The testicular spermatid number was significantly (p<0.01) higher in goat milk (222.8${\times}10^6$) than in the control (108.6), saline (98.2), and cow milk (118.2). In Experiment II, the cauda epididymal sperm motility after in vitro culture for 1 h was significantly (p<0.05) higher in fermented goat milk than in saline and goat milk. There was no significant difference in the cauda epidymal sperm motility between saline and goat milk but goat milk showed slightly higher sperm motility than saline. After in vitro culture for 3 h, the cauda epididymal sperm motility was significantly (p<0.01) higher in fermented goat milk and goat milk than in saline. The testicular spermatid number was significantly (p<0.05) higher in goat milk than in saline, and significantly (p<0.01) higher in fermented goat milk than in saline. And the serum testosterone levels of rats administered with goat milk or fermented goat milk were increased but were no significant difference among three groups. Also the prostate weight was significantly (p<0.05) increased in the goat and fermented goat milk. In Experiment III, the swimming time in the goat milk and fermented goat milk groups was significantly (p<0.01) longer than in the control and saline. There was no significant difference in the swimming time between goat and fermented goat milk but the fermented goat milk showed slightly longer swimming time than the goat milk. Conclusion: The cauda epididymal sperm motility, the testicular spermatid number and stamina were improved when the mice and rats were drunk with goat milk or fermented goat milk.

  • PDF