• Title/Summary/Keyword: Forced Convection Boiling

Search Result 17, Processing Time 0.026 seconds

Prediction of the Onset of Significant Void in Forced-Convection Subcooled Boiling (강제대류 아냉각비등에서 급격한 기포발생점의 예측)

  • 이상천;남상철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.681-689
    • /
    • 1994
  • A model to predict the onset of significant void (OSV) in vertical flow between parallel plates has been developed. The model was compared to the experimental data of Whittle and Forgan (1967) and Dougherty et al. (1990), showing excellent agreement. The model was also compared with the Saha-Zuber(1974) correlation, which has been widely used in computer codes for nuclear safety analysis. The present theory is more conservative than this correlation, and further shows that, contrary to this correlation, the Stanton number is not solely related to the Peclet number. This may explain the large error margins required for the Saha-Zuber correlation, and also the scatter beyond the error margins specified by the authors. The steady-state OSV heat fluxes for equal and unequal heating cases between parallel plates were compared. The arithmetic mean of heat fluxes for unequal heating cases is less than the heat flux for equal heating cases. The result may imply that OSV is controlled by local thermal parameters rather than bulk parameters.

Thermal Performance of Cooling System for a Laptop Computer Using a Boiling Enhancement Microstructure (비등 촉진 마이크로 구조물을 이용한 휴대용 컴퓨터 냉각시스템의 열성능에 관한 연구)

  • Cho, N.H.;Jeong, W.Y.;Park, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2043-2052
    • /
    • 2008
  • The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at $95^{\circ}C$.

  • PDF

An Experimental Study of Nucleate Boiling Heat Transfer With EHD Technique in CFC-11 and HCFC-123 (Chiller용 냉매 CFC-11과 대체냉매 HCFC-123의 전기장을 사용한 핵비등 열전달 촉진에 관한 연구)

  • Kwak, T.H.;Kim, J.H.;Jung, D.S.;Kim, C.B.;Cha, T.W.;Han, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.365-379
    • /
    • 1994
  • Pool boiling experiments were carried out to study the effect of electric field on nucleate boiling heat transfer. CFC-11 and its alternative HCFC-123 were used as working fluids. Boiling on both single tube and a bundle of five tubes was investigated. Heat flux varied from 5 to $25kW/m^2$ while the applied voltage changed from 0 to 1kV. The results showed that at low heat flux where boiling was not present or very weak, electric field-induced forced convection helped increase the heat transfer coefficients of CFC-11 and HCFC-123 significantly(4-15 times increase). However, at higher heat flux, nucleate boiling of CFC-11 which is a highly dielectric fluid, was not affected significantly by the application of electric field. In contrast to CFC-11, even at high heat flux, nucleate boiling of CFC-11 which has a relatively larger electric conductivity than CFC-11, was vigorously increased up to 2-4 times. The additional power required to apply the electric field was 1-2% of the total power consumption by the heater. The increase in overall heat transfer coefficient of evaporators with HCFC -123 was about 40%, suggesting a considerable reduction in evaporator size with EHD technique.

  • PDF

Development of Multi-point Heat Flux Measurement for Steel Quenching (강재 열처리용 다점 열유속 측정 기술 개발)

  • Lee, Jungho;Oh, Dong-Wook;Do, Kyu Hyung;Kim, Tae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.

Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet (평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석)

  • Ahn, Dae-Hwan;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

A Study on the Local Boiling of the Consolidated Spent Fuel Storage Pool (조밀화된 사용후 핵연료 저장조에서의 국부 비등에 관한 연구)

  • Lee, Chang-Ju;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-19
    • /
    • 1993
  • The natural convection model of the consolidated system has been developed to make sure the removal of decay heat generated in the spent fuel for the loss of forced cooling accident. The numerical technique employed was based on the ADI scheme. The calculation of heat generation rate in the spent fuel was peformed by the ANS-79 decay heat model, and the nonuniform surface heat flux is assumed with a chopped sine curve for the conservative decay heat generation input. The sensitivity study was performed to examine the possibility of the pool bulk boiling by varying the various parameters, i.e. inter-fuel spacing ratio, heat generation power, and radius of the fuel rod. The application results of this model show that the natural circulation flow through compacted spent fuel bundles enables the pool temperature to control in a safe and effective manner, after the required cooling time. The corresponding acceptance criteria of the cooling time for rearranging the spent fuel rods were also found.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.