• 제목/요약/키워드: Forced Air Convection

검색결과 117건 처리시간 0.021초

사다리꼴 핀에 대한 해석적 방법과 실험의 비교 (Comparison Between Analytic Method and Experimentation on the Trapezoidal Fin)

  • 조철현;한영민;강형석
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.75-80
    • /
    • 2005
  • A trapezoidal fin is analyzed by using one-dimensional analytic method. For two boundary conditions, the heat transfer rate is given instead of specified temperature at the fin base and heat conduction into the fin tip is equal to heat convection from the tip. Temperatures at three different points within the trapezoidal fin are measured by using experimental apparatus. A comparison of the temperature between one-dimensional analytic method and experimentation is made as a function of dimensionless fin length under both free convection and forced convection conditions. The ratio of heat loss from the fin tip surface to that through the fin base is presented as a function of dimensionless fin length and Biot number. One of results shows that the relative error increases as the air velocity increases for forced convection conditions.

  • PDF

착상조건하에서 핀-관 열교환기 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Fin-Tube Heat Exchanger under Frosting Condition)

  • 이관수;박희용;이태희;이남교;이수엽;이명렬
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.319-328
    • /
    • 1995
  • In this study, the experiment with 2rows-2columns fin-tube heat exchanger under forced convection and frosting condition is performed. The influence of each operating condition(the temperature of air, the humidity of air, the velocity of air, the temperature of coolant) on the growth of frost layer, air-side pressure drop, and characteristics of heat transfer is investigated. The experimental results show that the frost thickness increases rapidly in the early stage of frost formation and increases linearly after sometime. The frost thickness increases with the increase of the inlet air humidity and velocity and the decrease of inlet air temperature and coolant temperature. It is also found that the total energy transfer rate increases with the increase of inlet air temperature and velocity and with the decrease of inlet air humidity and coolant temperature.

  • PDF

강제배기를 이용한 굴삭기 공기조화 시스템에 관한 연구 (A Study on Air-Conditioning System for Excavator using Forced Exhaust)

  • 황지현;정찬세;고주현;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권2호
    • /
    • pp.23-29
    • /
    • 2013
  • The excavator is used in a variety of construction environments. There are many kinds of risk like falling rocks or harmful dust. The excavator cabin protects the operator not only from these harmful environments but also provides a comfortable working environment. By the way, the excavator cabin consumes a lot of energy for cabin air conditioner. For this reason, the research is required to reduce energy consumption. This study suggests the air conditioning system for excavator using forced exhaust. First, the forced exhaust system simulated by AMESim tool and surveyed the applicability. Using AMESim simulation, it was investigated the effect of cabin inside temperature by intake flow rate and intake air temperature. The experiment executed using the 1.5 ton excavator and field tested according to the intake flow rate. Finally, verified the applicability on the air conditioning system for excavator using forced exhaust.

전산모사를 이용한 히트싱크의 열 유동 해석 (Heat flow Analysis of Heat Sink Using the Computational Simulation)

  • 임송철;장시영;김현태;이동헌;강계명
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.522-528
    • /
    • 2004
  • Heat analysis of the plate type and wave type heat sink were carried out by using computational simulation. The heat resistance and air flow of two heat sink models were analysed according to natural and forced convection condition and positions of fan. When a fan was at the position of z-axis and y-axis in forced convection, the heat resistances of plate type heat sink were $0.17^{\circ}C/W$, and $0.28^{\circ}C/W$ respectively. In the case of wave type heat sink, they were $0.18^{\circ}C/W$ and $0.53^{\circ}C/W$. As the air flow velocities were averagely $0.386\;m/s\~3.269\;m/s$, air flow velocity of plate type heat sink was faster than that of wave type. In this experiment, it was observed that the plate type heat sink showed a good ability of heat radiation comparing with wave type one.

이차원 사각형 공동 내부에서의 강제 대류 열전달 (Forced Convection Heat Transfer from an Inner Surface of a Two-Dimensional Rectangular Cavity)

  • 서태범;한귀영;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.77-84
    • /
    • 2002
  • In order to investigate forced convection heat transfer due to the wind from the inner surface of a cavity receiver for a parabolic dish type solar energy collecting system, a two-dimensional rectangular cavity receiver is prepared and installed in a wind tunnel. The convection heat transfer coefficient of the inner surface of the receiver is dependent on the direction and the velocity of the wind. The attack angle of the cavity and the air velocity in the tunnel are controlled in a wide range so that the effects of the attack angle and the wind velocity on the heat transfer coefficient can be studied. The skirt is installed at the aperture of the cavity in order to reduce convective heat loss. The effects of the length and the installation angle of the skirt on convection heat transfer of the cavity are tested. It is found that convection heat loss can be significantly reduced by installing the skirt. Also, it is known that heat transfer from the cavity can be minimized if the angle of the skirt is $90^{\circ}$ to the outer surface of the cavity.

냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구 (The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck)

  • ;김원욱;이상렬;김용찬
    • 설비공학논문집
    • /
    • 제25권11호
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.

수평증발관내 R22/R114 혼합냉매의 열전달 특성에 관한 연구 (A Study for Evaporation Heat Transfer Characteristic of R22/Rl14 Refrigerant Mixtures in a Horizontal Tube)

  • 윤치한;이종인;하옥남
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.502-510
    • /
    • 2000
  • Evaporation heat transfer characteristics were studied in a horizontal tube using R22/R114 non-azotropic refrigerant mixture. the heat transfer coefficient was high in the upper part for pure refrigerants, and heat transfer coefficient was low in the lower part for refrigerant mixtures. In the low quality region where nucleate boiling was dominant, the average heat transfer coefficient was low. In the region where forced convection was dominant, heat transfer coefficient was high. Results show that the heat transfer coefficient for pure refrigerants obtained by experiments were lower than those of Yoshida et al. but agreed well with Jung et al., and Chen et al. data. But the heat transfer coefficients for refrigerant mixtures were lower about 20% than those predicted by the equation for pure refrigerant.

  • PDF

V형 원형휜-원형관의 강제대류 열유동 특성 (Forced Convection Characteristics of V shape Circular fin-tube Heat Exchanger)

  • 이종휘;임무기;강희찬
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.649-655
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistances and heat transfer characteristics of V-shaped circular fin-tube heat exchangers. Four types of V-shaped fins in which the fin areas are identical but the areas of the V-shaped portion are different have been tested numerically. The results obtained for heat transfer, pressure drop, and fin temperature are discussed in this paper. With increase in the area of the V-shaped portion, the pressure drop and heat transfer increase up to 40% and 24%, respectively, in the present test range.

CFD를 이용한 히트싱크의 열 해석 (Thermal Analysis of Heat Sink Models using CFD simulation)

  • 임송철;이명호;강계명
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.829-832
    • /
    • 2005
  • Thermal analysis of new designed heat-sink models was carried out according to the natural ana the forced convection using computational fluid dynamics(CFD). Heat resistance of wave type, top vented wave type and plate type of heat sink was compared with each other As the direction of fin and air flow are vertical(z-axis), it is shown that radiant heat performance of all of heat sinks was superior than other experimental conditions. Especially, the heat resistance of top vented wave heat sink was $0.17^{\circ}C/W$(forced convection) and $0.48^{\circ}C/W$(natural convection). The radiant heat performance of heat sink was increased with increasing the height of fin and the width of fin pitch.

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF