• Title/Summary/Keyword: Force-length relationship

Search Result 102, Processing Time 0.024 seconds

Evaluations of load-deformation behavior of soil nail using hyperbolic pullout model

  • Zhang, Cheng-Cheng;Xu, Qiang;Zhu, Hong-Hu;Shi, Bin;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.277-292
    • /
    • 2014
  • Soil nailing, as an effective stabilizing method for slopes and excavations, has been widely used worldwide. However, the interaction mechanism of a soil nail and the surrounding soil and its influential factors are not well understood. A pullout model using a hyperbolic shear stress-shear strain relationship is proposed to describe the load-deformation behavior of a cement grouted soil nail. Numerical analysis has been conducted to solve the governing equation and the distribution of tensile force along the nail length is investigated through a parametric study. The simulation results are highly consistent with laboratory soil nail pullout test results in the literature, indicating that the proposed model is efficient and accurate. Furthermore, the effects of key parameters, including normal stress, degree of saturation of soil, and surface roughness of soil nail, on the model parameters are studied in detail.

Relationship between the Biomechanical Analysis and the Qualitative Analysis of Video Software for the Walking Movement (보행동작에 대한 바이오메카닉스적 분석과 비디오의 정성적 분석의 상호관련성)

  • Bae, Young-Sang;Woo, Oh-Goo;Lee, Jeong-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.421-427
    • /
    • 2010
  • The purpose of this study was to investigate the relationship between the quantitative analysis of biomechanical movement and the qualitative analysis of video software in order to evaluate for the walking movement. The fourteen collegiate students who agreed with the purpose and method of this study participated as subjects. The slow walking and fast walking of the subjects in the place of experiment were photographed, and calculated several mechanical factors. This empirical evidence from the experiment indicated the significant difference(p<.001) between each distant factors of the walking movement for both analyses methods, but there was no statistically significant difference between the spacial factors observed in the experiment. For more detail, no significant difference between the walking ratios that expressed the coordination between stride length and stride frequency was found. The findings also indicated the high coefficient of correlation(over r=.9) which supports higher explanation force for the biomechanical method and the Dartfish video software method. Therefore, if the data was gathered by using the proper experimental method, the video software method could be used just like the quantitative data of biomechanical method.

Motion Error Analysis of the Porous Air Bearing Stages Using the Transfer Function (전달함수를 이용한 다공질 공기베어링 스테이지의 운동오차해석)

  • 박천홍;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.185-194
    • /
    • 2004
  • In order to analyze the motion errors of the aerostatic stage, it is necessary to consider the influence of the moment variation occurred inside the pads. In this paper, a motion error analysis method utilizing the transfer functions on the reaction force and moment is proposed, and general characteristics of the transfer functions are discussed. Calculated motion errors by the proposed method show good agreement with the ones calculated by Multi fad Method, which is considered the entire table as an analysis object. Also, by the introduction of the transfer function of motion errors, which represent the relationship between the spatial frequency components of the rail form error and motion errors, motional characteristics of the porous aerostatic stage can be generalized. In detail, the influence of the spatial frequencies is analyzed qualitatively, and the patterns of the insensitive frequencies which almost do not affect the linear motion error or angular motion error according to the rail length ratio and the number of the pad are verified. The relationship between the moment variation occurred inside the pads and the motion errors is also verified together.

Analysis and Environment on Bond Characteristic of High-Strength Steel RC Members (고장력 철근을 사용한 RC부재의 부착특성에 관한 해석 및 실험)

  • 곽성태;윤영수;송영철;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.443-448
    • /
    • 2001
  • This paper presents a bond characteristics of high strength steel reinforced concrete members. High strength steel is what yield strength is higher than that of normal strength steel. So, the amount of flexural steel needed in R.C. members can be decreased. In result, it is expected that the workability and structure quality can improve and man power can minimize. For this purpose, specimens were made and tested with experimental parameters, such as concrete strength, steel diameter and yield strength. The result showed that under same tensile force of steel, in case of substituting normal strength steel with high strength steel, maximum bond stress increased and development length didn't almost change. In addition, the governing equation of bond and bond stress verse slip relationship were derived and compared with test values such as maximum bond stress, slip and bond stiffness.

  • PDF

The Effect of Fatigue Crack Behavior on the Variable Depth of Micro Hole Defects in SM20C at the Symmetric Position (대칭위치에 존재하는 미소원공결함의 깊이변화가 SM20C의 피로균열거동에 미치는 영향)

  • 송삼홍;김성태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.856-860
    • /
    • 2002
  • The main objective of this study is to consider the effect of fatigue crack behavior on the variable depth of micro hole defects in SM20C at the symmetric position. The fatigue crack propagation test is performed by rotary bending fatigue test machine. The relationship between crack length(2a), cycles(N) and crack growth rate(da/dN) are investigated in this study. The result from the rotary bending fatigue test under the applied stress at 250MPa turned out that the fatigue life illustrated almost constant when the depth of symmetric micro hole deflects is both part A and B at the hope depth(h) = 0.5mm.

  • PDF

ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP (부착응력-상대슬립을 이용한 휨균열폭 산정)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

Slenderness effects on the simulated response of longitudinal reinforcement in monotonic compression

  • Gil-Martin, Luisa Maria;Hernandez-Montes, Enrique;Aschheim, Mark;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.369-386
    • /
    • 2006
  • The influence of reinforcement buckling on the flexural response of reinforced concrete members is studied. The stress-strain response of compression reinforcement is determined computationally using a large-strain finite element model for bars of varied diameter, length, and initial eccentricity, and a mathematical expression is fitted to the simulation results. This relationship is used to represent the response of bars in compression in a moment-curvature analysis of a reinforced concrete cross section. The compression bar may carry more or less force than a tension bar at a corresponding strain, depending on the relative influence of Poisson effects and bar slenderness. Several cross-section analyses indicate that, for the distances between stirrups prescribed in modern concrete codes, the influence of inelastic buckling of the longitudinal reinforcement on the monotonic moment capacity is very small and can be neglected in many circumstances.

Analytical Study on Hydroelastic Vibration of Stiffened Plate for a Rectangular Tank (사각형 탱크 보강판의 유체구조 연성진동에 대한 이론적 인구)

  • Kim, K.S.;Kim, D.W.;Lee, Y.B.;Choi, B.H.;Choi, S.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.65-68
    • /
    • 2005
  • In this paper, a theoretical study is carried out on the hydroelastic vibration of a rectangular tank wall. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to wall vibration. In addition, the vibration characteristics of stiffened wall of the rectangular tank are investigated. Assumed mode method is utilized to the stiffened plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method and then added mass effect is discussed due to tank length and potential mode.

  • PDF

Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling (고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정)

  • Ko, Tae-Jo;Jung, Hoon;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.