• Title/Summary/Keyword: Force-feedback

Search Result 554, Processing Time 0.025 seconds

A Haptic Interface Using a Force-Feedback Joystick (힘 반향 조이스틱을 이용한 햅틱 인터페이스)

  • Ko, Ae-Kyoung;Kim, Hong-Chul;Lee, Jang-Myung;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1207-1212
    • /
    • 2007
  • We propose a haptic interface algorithm for joystick operators working in remote control systems of unmanned vehicles. The haptic interface algorithm is implemented using a force-feedback joystick, which is equipped with low price DC motors without encoders. Generating specific amounts of forces on the joystick pole according to the distance between a remote controlled vehicle and obstacles, the haptic interface enables the operator to perceive the distance information by the sense of touch. For the case of no joystick operation or no obstacles in the working area, we propose an origin control algorithm, which positions the joystick pole at the origin. The origin control algorithm prevents the false movement of the remote vehicles and provides the operator with a realistic force resisting the joystick pole's movement. The experiment results obtained under various scenarios exemplify the validity of the proposed haptic interface algorithm and the origin control algorithm.

MR Haptic Device for Integrated Control of Vehicle Comfort Systems (차량 편의장치 통합 조작을 위한 MR 햅틱 장치)

  • Han, Young-Min;Jang, Kuk-Cho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.291-298
    • /
    • 2017
  • In recent years, the increase of secondary controls within vehicles requires a mechanism to integrate various controls into a single device. This paper presents control performance of an integrated magnetorheological (MR) haptic device which can adjust various in-vehicle comfort instruments. As a first step, the MR fluid-based haptic device capable of both rotary and push motions within a single device is devised as an integrated multi-functional instrument control device. Under consideration of the torque and force model of the proposed device, a magnetic circuit is designed. The proposed MR haptic device is then manufactured and its field-dependent torque and force are experimentally evaluated. Furthermore, an inverse model compensator is synthesized under basis of the Bingham model of the MR fluid and torque/force model of the device. Subsequently, haptic force-feedback maps considering in-vehicle comfort functions are constructed and interacts with the compensator to achieve a desired force-feedback. Control performances such as reflection force are experimentally evaluated for two specific comfort functions.

The Effects of Trunk Movement and Ground Reaction Force during Sit to Stand Using Visual Feedback (시각 되먹임을 이용한 앉은 자세에서 일어서기 시 몸통의 동작과 지면 반발력에 미치는 영향)

  • Yeong-Geon Koh;Tae-Young Oh;Jae-Ho Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Purpose : This study was conducted to investigate the changes in trunk movement and ground reaction during sit to stand motion using visual feedback. Methods : Fifteen adults (average age: 23.53±1.77 years) participated in this study. An infrared reflective marker was attached to the body each participant for motion analysis, and the participants performed sit to stand motion while wearing a hat attached with a laser pointer, which provided visual feedback. First, the sit to stand action was repeated thrice without obtaining any visual feedback, followed by a three minute break. Next, the laser pointers attached to hats were irradiated on a whiteboard, located at a distance of 5 m in front of the chairs, on which the participants sat; a baseline was set, and the participants performed stand up movements three times under this condition. A visual feedback was provided to the participants to prevent the laser pointers from crossing the set baseline. During each stand-up movement, the position of the reflective marker attached to the subject's body was recorded in real time using an infrared camera for motion analysis. The trunk movement and ground reaction force were extracted through recorded data and analyzed according to the presence or absence of visual feedback. Results : The results indicated that in the presence of a visual feedback during the sit-to-stand movements, the range of motion of the trunk and hip joints decreased, whereas that of the knee and ankle joints increased in the sagittal plane. The rotation angle of the trunk in the horizontal plane decreased. The left and right movement speed of the center of pressure increased, the pressing force decreased, and the forward and backward movement speed of the trunk decreased. Conclusion : The results suggest that the efficiency and stability of the stand up movement of a body increase when a visual feedback is provided.

Development of Sensory Feedback System for Myoelectric Prosthetic Hand (전동의수 사용자를 위한 감각 측정 및 전달 시스템 개발)

  • Bae, Ju-Hwan;Jung, Sung Yoon;Kim, Shinki;Mun, Museong;Ko, Chang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2015
  • This study aimed to develop a sensory feedback system which could measure force and temperature for the user of myoelectric prosthetic hands. The Sensory measurement module consisted of a force sensing resistor to measure forces and non-contact infrared temperature sensor. These sensors were attached on the fingertips of the myoelectric prosthetic hand. The module was validated by using standard weights corresponding to external force and a Peltier module. Sensory transmission module consisted of four vibration motors. Eight vibration patterns were generated by combining motion of each vibration motor and were dependent on kinds and/or magnitude. The module was verified by using standard weigts and water at varying temperatures. There were correlations of force and temperature between the sensory measurement module and standard weight and water. Additionally, exact vibration patterns were generated, indicating the efficacy of the sensory feedback system for the myoelectric prosthetic hand.

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Development of an Integrated Mouse Type Tactile Display System (마우스형 통합 질감 제시 시스템 개발)

  • Kyung Ki-Uk;Son Seung-Woo;Yang Gi-Hun;Kim Munsang;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.445-450
    • /
    • 2005
  • In this paper, we suggest an integrated tactile display system that provides kinesthetic force, pressure distribution, vibration and slip/stretch. The system consists of two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to the skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate the characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device, using eight piezoelectric bimorphs and a linear actuator, Is implemented and attached to a 2 DOF translational force feedback device to simultaneously simulate the texture and stiffness of the object. As a result, we find out that the capability of the suggested device is sufficient to display physical quantities to display the texture.

Design of a novel haptic mouse system

  • Choi, Hee-Jin;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.51.4-51
    • /
    • 2002
  • $\textbullet$ A noval haptic mouse system is developed for human computer interface. $\textbullet$ Five bar mechanism is adapted for 2 dof force feedback with virtual environment. $\textbullet$ Double prismatic joint type mechanism is adapted to reflect 1 dof grabbing force feedback. $\textbullet$ Cable driven mechansim is used for actuation to reduce backlash and endow backdrivability. $\textbullet$ Virtual wall perception experiment is conducted to obtain force specification for haptic mouse. $\textbullet$ Average mouse workspace is measured using magnetic position tracker.

  • PDF