• Title/Summary/Keyword: Force-deflection characteristics

Search Result 121, Processing Time 0.026 seconds

Modeling and Measurement of Electrostatic Micro Mirror Array Fabricated with Single Layer Polysilicon Micromachining Technology (단층 다결정 실리콘 마이크로머시닝 기술로 제작된 정전형 마이크로 미러 어레이의 모델링 및 측정)

  • Min, Young-Hoon;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.612-614
    • /
    • 1997
  • Silicon based micro mirror array is a highly efficient component for use in optical applications such as adaptive optical systems and optical correlators. A micro mirror array designed, fabricated and tested here is consisted of $5{\times}5$ single layer polysilicon, electrostatically driven actuators. In this paper, deflection characteristics and pull-in behavior of the actuators for analog control was studied and particularly, the influence of the residual stress in flexure beams for the restorative force of actuators was considered. The springs are modeled as a residual stress-free spring and a spring with residual stress. In calculation, a mirror with the residual stress-free springs has 30.3N/m spring constant and 31.1V pull-in voltage. On the other hand, a mirror with the stressed springs has 23.6N/m and 27.4V respectively. The experimental result, which is 20.5N/m and 25.5V, shows that the stressed springs ore well modeled.

  • PDF

A study of rear seat belts geometric characteristics for rear seated occupants protections (뒷좌석 승객 보호를 위한 안전띠의 기하학적 특성에 대한 연구)

  • Youn, Younghan;Park, Jiyang;Lee, Seungsang;Kim, Minyoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The protection of frontal seat passengers in both driver and front seated occupant has been more focused from the auto industries as well as regulatory bodies more than 40 years. Recently, their interests have been extended to rear seat occupants especially children and female occupants. However, the current available safety devices for the rear seat occupants are seat belt only. According to the previous researchers, the injury level of the rear seat passengers tend to be higher than the injury level of the frontal seat passengers. In this study, the optimal location of seat belts anchorages to enhance rear passengers crashworthiness are studied. FEM models are designed in accordance with regulation of KMVSS102, UN R44, UN R16, and UN R14. and three point belts are fitted on the HybridIII 5th percentile dummy and HybridIII 50th percentile dummy. The combined injury value used HIC15, Nij, Chest deflection, Femur force are used to evaluate rear seat belt anchorage optimal locations.

A Study on Design of Small Type Screw Decanter using Commercial Analysis Tool (상용해석 툴을 이용한 소형 스크류 디캔터의 설계에 관한 연구)

  • Kim, Y.S.;Kim, J.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.46-52
    • /
    • 2014
  • This study suggests a small-sized screw decanter specialized for dredging sites. Generally, conventional screw decanters are composed of a cylinder and a cone. However, the suggested screw decanter simply has a cone based on a cone-type bowl structure. In this research, a commercial analysis tool is used to establish an optimal design for the bowl and the screw conveyor. Moreover, the base frame, where the main bearings that support the spindle of the bowl and the screw conveyor are installed, is optimally designed considering the weight of the rotating body and the deflection caused by the high centrifugal force. Furthermore, the natural frequency range of the spinning body, the bowl and the screw conveyor, is applied to this base frame; it is designed not to correspond to the resonance frequency range and achieves stability as a result. This study suggests an optimal design for the rotating body and the base frame of a screw decanter considering its vibration characteristics. Such a design will prevent overuse of materials and help to reduce the weight and volume-and the price-of a screw decanter.

An Effect of the Behavior of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부후긴장 보강공법이 판형교의 거동에 미치는 영향)

  • Min, Rak-Ki;Sung, Deok-Yong;Kim, Eun-Kyun;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.514-521
    • /
    • 2006
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridge as well as architecture structure. Therefore, the major objective of this study is to investigate the effects and application of external post-tensioning method for steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis and laboratory test for the dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease stress and deflection on steel plate girder bridge for serviceability. It is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method. The servicing steel plate girder bridge with external post-tensioning is the reasonable reinforcement measures which could be secured the stability of dynamic behavior and increase a dropped durability.

  • PDF

Vibration Measurement of an Automobile Exhaust System in Operation (구동중인 자동차 배기계의 진동 특성 측정)

  • Kim, Sung-Kook;Lee, Jong-Nam;Han, Soon-Woo;Chung, Tae-Jin;Lee, Sin-Young;Jang, Gang-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.235-240
    • /
    • 2007
  • In this work, the operational deflection shape(ODS) of an automobile exhaust system is measured by using a recently-developed magnetic sensor. The magnetic sensor is composed of a solenoid and two pairs of permanent magnets generating an antisymmetric magnetic field in the lateral direction inside the solenoid. Lateral movement of a ferromagnetic pipe inside the magnetic field of the suggested sensor induces an electromotive force in the solenoid corresponding to the lateral velocity of the pipe. Due to the simplicity and non-contact characteristics of the magnetic sensor, dynamic behaviors of the structures operating under high temperature such as an exhaust pipe can be efficiently observed. It is shown that the lateral ODS of an exhaust system can be successfully measured by the suggested sensors.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head (멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정)

  • Park, Jang Ho;Cho, Jeong-Rae;Park, Jaegyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.581-588
    • /
    • 2014
  • The PSC bridges have recently been widely used in Korea. The PSC bridge is a structure whose performance is improved through the use of tendons and steel bars in deflection and cracking characteristics of the concrete. Therefore, measurement or estimation of the load acting on tendon is important in order to maintain the PSC bridges efficiently and safely. This paper deals with a numerical study on the deformation of a multi-tendon anchor head in order to verify the relationship between the load acting on tendon and the deformation of anchor head. All kinematics, material properties and contact nonlinearity are included for the precise analysis and numerical studies are performed by Abaqus. From the numerical results, it is verified that the hoop strain is most useful in the estimation of the load acting on tendon and strains are affected by various parameters such as friction coefficient, boundary conditions, and arrangement.

Influence of the Combustion Flames on the Flashover Characteristics of the Sphere-Sphere Air Gap (구-구갭의 섬락 특성에 미치는 연소화염의 영향)

  • Kim, In-Sik;Lee, Sang-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, reduction characteristics of the AC and DC flashover voltage in the horizontal air gap of sphere-sphere electrode system were investigated when the combustion flame was present near the high voltage electrode. The voltage and current waveforms were measured, when the flashover is occurred, in order to examine the flashover polarity by flame. The reduction characteristics of AC flashover voltage were discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that caused by the coulomb's force. As the results of an experimental investigation, It was found that the reduction of flashover voltages in sphere-sphere system, in comparison with the no flame case, are $79.9[\%]$ for k=0, $82.9[\%]$ for k=0.5, $87.5[\%]$ for k=1.0, $85.0[\%]$ for h=0[cm], $40.8[\%]$ for h=5[cm] and $28.2[\%]$ for h=9[cm] when ac voltage is applied. The influence for thermal ionization process of the combustion flame in small scale no particular change is recognized.

Flashover Characteristics of the Horizontal Air Gaps Caused by Combustion Flames (연소화염에 의한 수평배치 공기갭의 섬락전압 특성)

  • 김인식;김이국;김충년;지승욱;이상우;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • In this paper, characteristics of the ac and dc flashover voltage in the horizontal air gap of a needle-needle electrode system were investigated when the combustion flame was present near the high-voltage electrode. In order to examine the flashover phenomena and the corona inception voltages caused by flame we measured the voltage and current waveforms when the corona and the flashover was occurred. We also observed, as increasing the applied voltages, the deflection or fluctuation phenomena in the shape of flames caused by the corona wind and the coulomb's force. As the results of an experimental investigation, we found that the reduction of flashover voltages, in comparison with the no-flame case, are 62.7[%] for k=1.0, 34.2[%] for h=5[cm], 27.3[%] for h=7[cm] and 21.4[%] for h=9[cm] when ac voltage is applied.

On Flow Charactistics around Special Rudders by PIV Measurement; Flapped and Water-blowing Rudder (PIV 계측에 의한 특수타 주위의 유동특성에 대하여; 플랩러더와 물분사러더)

  • Gim, Oxoc
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.200-207
    • /
    • 2017
  • The purpose in having a control surface on ships is to control the motion of the ship. The control surface may be composed entirely of a single movable surface or of a combination of fixed and movable portions. A control surface has one sole function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of this rotation and angle of attack then determine the manoeuvring characteristics of the ship. In this paper, two-dimensional flow characteristics of a flapped rudder and a water-blowing control rudder were accomplished respectively by PIV method in a circulating water channel. Model test has been carried out with different angles of attack of main foil (NACA 0012) and flap's deflection angles to predict the performance of the flapped rudder and the water-blowing control rudder. The 2-frame particle tracking method has been used to obtain the velocity distribution in the flow field. $Re{\fallingdotseq}3.0{\times}10^4$ has been used during the whole experiments and measured results have been compared with each other.