• Title/Summary/Keyword: Force sensor array

Search Result 35, Processing Time 0.028 seconds

Development of an Educational System and Real Time Nonlinear Control (I) (교육용 시스템 개발과 실시간 비선형 제어(I))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.562-570
    • /
    • 2002
  • The Purpose of this paper is to design and manufacture an educational system in order to demonstrate the causes and effects of electromagnetic induction.'rho educational system described in this study is a "jumping ring apparatus". This system demonstrates the principle of electromagnetic induction, a force from AC sources, Lenz's law of repulsion and transformer. The educational system is composed of a jumping ring apparatus, a sensor array, encoder, A/D converter, D/A converter and nonlinear controller. The educational system is controlled by 586 PC using Turbo C program. The sensor array is composed of 20 optical sensors. The nonlinear controller consists of nonlinear control algorithm and control board included SCR, FET and phase controller. The A/D converter is used to show the height of ring position to analog for an education purpose. The control signal calculated from the nonlinear control of algorithm send control board through 8 bit D/A convertor. Experiment results are given to verify that Proposed nonlinear controller is useful in on line control of the educational system.al system.

A Study on Obstacles Avoidance for Mobile Robot Using Ultrasonic Sensor Array (초음파 어레이를 이용한 이동 로봇의 장애물 회피에 관한 연구)

  • 김병남;지용근;권오상;이응혁
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1113-1116
    • /
    • 1999
  • For mobile robot, the navigation effectiveness can be improved by providing autonomy, but this autonomy requires the mobile robot to detect unknown obstacles and avoid collisions while moving it toward the target. This paper presents an effective method for autonomous navigation of the mobile robot in structured environments. This method uses ultrasonic sensor array to detect obstacles and utilizes force relationship between the obstacles and the target for avoiding collisions. Accuracy of sensory data produced by ultrasonic sensors is improved by employing error eliminating rapid ultrasonic firing (EERUF) technique. Navigation algorithm controlling both the velocity and steering simultaneously is developed, implemented to the mobile robot and tested on the floor filled with the cluttered obstacles. It is verified that from the results of the field tests the mobile robot can move at a maximum speed of 0.66 m/sec without any collisions.

  • PDF

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

High throughput sorting(HTS) system using a cantilever-type electrode array (캔틸레버(Cantilever) 형태의 전극 어레이(array)를 이용한고속 분리 시스템)

  • Lee, Jung-Hun;Kim, Young-Ho;Kim, Young-Geun;Kim, Byung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.112-117
    • /
    • 2010
  • A high-throughput sorting (HTS) system has been designed to separate target particles using a negative dielectrophoretic (n-DEP) force. The system consists of a meso-sized channel and a cantilever-type electrode(CE) array designed to separate a large number of target particles by discerning subtle difference of weight and dielectric material property of the particles. Using the polystyrene beads with various sizes of 10, 25 and $50{\mu}m$, the developed system exhibits high-throughput sorting of about 200 beads/sec and more than 80 % of separation efficiency.

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Development of Direct Printed Flexible Tactile Sensors

  • Lee, Ju-Kyoung;Lee, Kyung-Chang;Kim, Hyun-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper proposes a structure of direct-printed flexible tactile-sensor. These flexible tactile sensors are based on pressure-sensing materials that allow pressure to be measured according to resistance change that in turn results from changes in material size because of compressive force. The sensing material consists of a mixture of multi walled carbon nanotubes (MWCNTs) and TangoPlus, which gives it flexibility and elasticity. The tactile sensors used in this study were designed in the form of array structures composed of many lines so that single pressure points can be measured. To evaluate the performance of the flexible tactile sensor, we used specially designed signal-processing electronics and tactile sensors to experimentally verify the sensors' linearity. To test object grasp, tactile sensors were attached to the surface of the fingers of grippers with three degrees of freedom to measure the pressure changes that occur during object grasp. The results of these experiments indicate that the flexible tactile sensor-based robotic gripper can grasp objects and hold them in a stable manner.

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D.;Chen, Min;Oberheim, Thomas E.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition (표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작)

  • Park, Hyung Ju;Park, Jeong Won;Lee, Dae-Sik;Pyo, Hyeon-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.