• 제목/요약/키워드: Force sense

검색결과 250건 처리시간 0.023초

근막변형모델이 최대악력, 힘 감각 그리고 관절가동범위에 미치는 효과 (The Effect of Fascial Distortion Model on Maximal Grip Strength, Force Sense and Range of Motion)

  • 김지영;김성렬
    • 대한통합의학회지
    • /
    • 제9권1호
    • /
    • pp.33-40
    • /
    • 2021
  • Purpose : The fascia is the body's largest sensory organ affected by mechanical stimuli such as pressure. Fascial distortion model (FDM) is one of the fascia treatment techniques, and it is based that most musculoskeletal problems are caused by three-dimensional distortion of the fascia. Until now, some studies have been conducted to investigate the effect of FDM, but it is still not enough. In this study, among the six techniques of FDM, trigger band (TB) and cylinder distortion (CyD) were applied to the forearm to investigate the immediate effect on the maximal grip strength, force sense and range of motion. Methods : 22 healthy adults in their 20s and 30s participated. Before and after the application of FDM, maximal grip strength, force sense and range of motion were measured. For analysis, a paired t-test was performed, and the significance level was set to p<.05. Results : After FDM, there were a significant differences that increased the force sense and the range of motion (p<.05). But the maximal grip strength did not show a significant difference (p>.05). Conclusion : The results of this study, the FDM did not affect maximal grip strength, but it was shown to increase the sense of force and range of motion. We assumed that it is the result of the changes in the states of the fascia and changes in the activity of mechanical receptors induced by pressure and stretch from FDM application.

다른 앉은 자세가 목의 관절가동범위, 근력, 고유수용성 감각에 미치는 영향 (The Effect of Different Sitting Postures on Range of Motion, Strength and Proprioceptive Sense of Neck)

  • 정지문;구자신;신원섭
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2212-2218
    • /
    • 2012
  • 본 연구의 목적은 다른 앉기 자세에 따라 목의 관절가동범위, 근력, 위치감각과 힘 감각에 어떠한 영향을 미치는가에 대해 알아보고자 하였다. 본 연구는 15명의 건강한 일반 대학생이 참여하였다. 곧은 앉기 자세와 구부정한 앉기 자세에 따라 관절가동범위와 관절위치감각은 관절각도 측정기를 사용하여 측정하였고, 최대 등척성 근력과 힘감각은 linear force를 사용하여 측정하였다. 그 결과 곧은 자세가 구부정한 자세보다 목의 최대 신전각도, 굴곡시 최대 등척성 근력이 유의하게 컸다(p<0.05). 또한 곧은 자세에서 관절위치감각과 힘감각의 오차가 유의하게 작았다(p<0.05). 이와같은 결과를 통해 다른 앉기자세가 목의 움직임 범위와 근력, 고유수용성감각에 영향을 미치며 곧은 앉기 자세가 구부정한 자세보다 관절가동범위와 근력에 이점이 있으며 고유수용성감각에 대한 인지능력이 향상됨을 알 수 있었다.

운동감의 정량화를 위한 감성 공학적 기법 개발

  • 신동윤;송재복;김용일
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 추계학술대회논문집
    • /
    • pp.359-365
    • /
    • 1997
  • When grasping a movable object or making an object move, humans feel kinesthetic sense. Kinesthetic sense is the human sense that the human feels in response to the motion acted on the human. The objecive of the paper is tranforming the kinesthetic sense to quantitized data that is useful from the viewpoint of engineering. To provide various motion patterns, 2-dimensional motion generator was built using 2-axis linear motors. Active stiffness and active damping were implemented by means of current control and force feedback techniques. Based on Taguchi method, the most dominant factors to affect kinesthetic sense were investigated. Also, some functions adequate to quantize the kinesthetic sense were found.

  • PDF

불안정판과 힘판을 이용한 평형감각 훈련시스템 개발 (Development of a Training System for Equilibrium Sense Using Unstable Platform and Force Plate)

  • 박용군;유미;김용욱;권대규;김남균
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.121-130
    • /
    • 2007
  • In this paper, we present the development of a new training system for equilibrium sense and postural control. This system consists of an unstable platform, a force plate, a computer, and training programs. The unstable platform provides 360 degrees of movement allowing for training in all directions. To evaluate the effects of the training system, we performed various experiments to train the ability of equilibrium sense and postural control of fifteen young healthy subjects. We measured the time a subject maintains his or her center of pressure on a target, the time a subject moves his or her center of pressure to a target, and the mean absolute deviation of the trace before and after the training. We analyzed these parameters obtained before and after the training using paried-sample T-test. The result shows that the subjects experienced distinctive enhancement in their ability of postural control through the training using our system.

운동감의 정량화를 위한 감성공학적 기법 개발에 관한 연구 (A Study on Quantification of Kinesthetic Sense Using Human Sensibility Ergonomics Approach)

  • 신동윤;이세한;송재복;김용일
    • 대한인간공학회지
    • /
    • 제17권1호
    • /
    • pp.11-22
    • /
    • 1998
  • When grasping a movable object or making an object move, humans feel kinesthetic sense. The kinesthetic sense is the human sense that the human feels in response to the motion acted on him. The objective of the paper is to transform the kinesthetic sense associated with the human arm into the quantified data that are useful from the engineering viewpoint. A 2-dimensional motion generator composed of two linear motors was developed to provide various motion patterns. It can change its stiffness and damping values on the real-time basis by properly regulating the force generated by the linear motors. Based on Taguchi method, the most dominant factors to affect the kinesthetic sense were investigated. Also, a reference function adequate to quantify the kinesthetic sense was found. Based on this function, the effects of changes in stiffness and damping on the kinesthetic sense were investigated. Various tests show that the damping is a more dominant factor than the stiffness in forming the kinesthetic sense.

  • PDF

근피로를 유발하는 운동강도 변화가 슬관절의 위치감각 인지에 미치는 영향 (The Effect of Graded Exercise-Induced Fatigue on Position Sense of the Knee)

  • 이충휘;최종덕;이강노;이동률;최재명
    • 한국전문물리치료학회지
    • /
    • 제6권3호
    • /
    • pp.22-37
    • /
    • 1999
  • It was recently reported that exercise-induced fatigue is related to joint position sense although some controversy remains. The purposes of this study were to examine the effect on the accuracy of reproducing the knee angles after a fatiguing isokinetic quadriceps exercise at four different levels (10%, 30%, 50%, and 70% of maximal force) and to find the optimal exercise level without causing knee joint proprioception impairment. Forty healthy women, ages 19 to 27, were randomly assigned to four experimental groups. Before and after the exercise, accuracy of positioning with respect to auditory feedback for specific angles was estimated by calculating the mean errors between specific angles and reproduction angles. Fatigue was measured by EMG signals displayed by a frequency spectrum analysis during the quadriceps exercise. Results showed that there was no significant difference in accuracy of the knee joint positioning sense following the exercises in group 1, group 2, and group 3 (10%, 30%, and 50% of maximal force, respectively); the exception being group 4 (70%). Fatigue level was significantly increased in group 4 but there were no significant increases of fatigue level in group 1, group 2, or group 3. The results concluded that the optimal exercise level to acquire the therapeutic exercise effectiveness without position sense impairment was at 50% of maximal force. Further studies using large sample size and patient groups with poor knee joint proprioception would be needed to confirm this conclusion and to clarify the possibility of clinical applications.

  • PDF

힘 반향 원격제어 모의시험기 개발에 관한 연구 (On the Development of a Testbed for Force-Teflecting Teleoperation)

  • 김상범;최용제;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1708-1713
    • /
    • 1997
  • In teleoperation of a manipulator, kinesthetic feedback can take an essential role in the sense that it provides an operator with more realistic information. In this paper, in order to implement the concept of kinesthetic feedback, force mapping algorithms based on screw theory have been presented. In the development of such algorithms, the virtual environment has been modeled usign a spring and dampers, and the forces caused by hitting the joint limits of a conrtolled manipulator were considered. Finally, some experimental results of force mapping algorithm have been presented.

  • PDF

고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계 (High-resolution Capacitive Microaccelerometers using Branched finger Electrodes with High-Amplitude Sense Voltage)

  • 한기호;조영호
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 2004
  • This paper presents a navigation garde capacitive microaccelerometer, whose low-noise high-resolution detection capability is achieved by a new electrode design based on a high-amplitude anti-phase sense voltage. We reduce the mechanical noise of the microaccelerometer to the level of 5.5$\mu\textrm{g}$/(equation omitted) by increasing the proof-mass based on deep RIE process of an SOI wafer. We reduce the electrical noise as low as 0.6$\mu\textrm{g}$/(equation omitted) by using an anti-phase high-amplitude square-wave sense voltage of 19V. The nonlinearity problem caused by the high-amplitude sense voltage is solved by a new electrode design of branched finger type. Combined use of the branched finger electrode and high-amplitude sense voltage generates self force-balancing effects, resulting in an 140% increase of the bandwidth from 726㎐ to 1,734㎐. For a fixed sense voltage of 10V, the total noise is measured as 2.6$\mu\textrm{g}$/(equation omitted) at the air pressure of 3.9torr, which is the 51% of the total noise of 5.1$\mu\textrm{g}$/(equation omitted) at the atmospheric pressure. From the excitation test using 1g, 10㎐ sinusoidal acceleration, the signal-to-noise ratio of the fabricated microaccelerometer is measured as 105㏈, which is equivalent to the noise level of 5.7$\mu\textrm{g}$/(equation omitted). The sensitivity and linearity of the branched finger capacitive microaccelerometer are measured as 0.638V/g and 0.044%, respectively.

실감형 모델링을 위한 볼륨 햅틱 렌더링 알고리즘 (Volume Haptic Rendering Algorithm for Realistic Modeling)

  • 정지찬;박준영
    • 한국CDE학회논문집
    • /
    • 제15권2호
    • /
    • pp.136-143
    • /
    • 2010
  • Realistic Modeling is to maximize the reality of the environment in which perception is made by virtual environment or remote control using two or more senses of human. Especially, the field of haptic rendering, which provides reality through interaction of visual and tactual sense in realistic model, has brought attention. Haptic rendering calculates the force caused by model deformation during interaction with a virtual model and returns it to the user. Deformable model in the haptic rendering has more complexity than a rigid body because the deformation is calculated inside as well as the outside the model. For this model, Gibson suggested the 3D ChainMail algorithm using volumetric data. However, in case of the deformable model with non-homogeneous materials, there were some discordances between visual and tactual sense information when calculating the force-feedback in real time. Therefore, we propose an algorithm for the Volume Haptic Rendering of non-homogeneous deformable object that reflects the force-feedback consistently in real time, depending on visual information (the amount of deformation), without any post-processing.

Cellular machinery for sensing mechanical force

  • Lim, Chul-Gyun;Jang, Jiyoung;Kim, Chungho
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.623-629
    • /
    • 2018
  • For mechanical force to induce changes in cellular behaviors, two main processes are inevitable; perception of the force and response to it. Perception of mechanical force by cells, or mechanosensing, requires mechanical force-induced conformational changes in mechanosensors. For this, at least one end of the mechanosensors should be anchored to relatively fixed structures, such as extracellular matrices or the cytoskeletons, while the other end should be pulled along the direction of the mechanical force. Alternatively, mechanosensors may be positioned in lipid bilayers, so that conformational changes in the embedded sensors can be induced by mechanical force-driven tension in the lipid bilayer. Responses to mechanical force by cells, or mechanotransduction, require translation of such mechanical force-induced conformational changes into biochemical signaling. For this, protein-protein interactions or enzymatic activities of mechanosensors should be modulated in response to force-induced structural changes. In the last decade, several molecules that met the required criteria of mechanosensors have been identified and proven to directly sense mechanical force. The present review introduces examples of such mechanosensors and summarizes their mechanisms of action.