References
- Luu YK, Capilla E, Rosen CJ et al (2009) Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 24, 50-61 https://doi.org/10.1359/jbmr.080817
- Song G, Ju Y, Shen X, Luo Q, Shi Y and Qin J (2007) Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces 58, 271-277 https://doi.org/10.1016/j.colsurfb.2007.04.001
- Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K and McIntyre P (2017) Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 23, 850-868 https://doi.org/10.1016/j.molmed.2017.07.007
- Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T and Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci U S A 97, 9052-9057 https://doi.org/10.1073/pnas.97.16.9052
- Nesbitt WS, Westein E, Tovar-Lopez FJ et al (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15, 665-673 https://doi.org/10.1038/nm.1955
- Beck FX, Burger-Kentischer A and Muller E (1998) Cellular response to osmotic stress in the renal medulla. Pflugers Arch 436, 814-827 https://doi.org/10.1007/s004240050710
- DuFort CC, Paszek MJ and Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12, 308-319
- van Helvert S, Storm C and Friedl P (2018) Mechanoreciprocity in cell migration. Nat Cell Biol 20, 8-20 https://doi.org/10.1038/s41556-017-0012-0
- Engler AJ, Sen S, Sweeney HL and Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 https://doi.org/10.1016/j.cell.2006.06.044
- Hamill OP and Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81, 685-740 https://doi.org/10.1152/physrev.2001.81.2.685
- Hu X, Margadant FM, Yao M and Sheetz MP (2017) Molecular stretching modulates mechanosensing pathways. Protein Sci 26, 1337-1351 https://doi.org/10.1002/pro.3188
- Gillespie PG and Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413, 194-202 https://doi.org/10.1038/35093011
- Nyholm TK, Ozdirekcan S and Killian JA (2007) How protein transmembrane segments sense the lipid environment. Biochemistry (Mosc) 46, 1457-1465 https://doi.org/10.1021/bi061941c
- Anishkin A, Loukin SH, Teng J and Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111, 7898-7905 https://doi.org/10.1073/pnas.1313364111
- Haswell ES, Phillips R and Rees DC (2011) Mechanosensitive Channels: What Can They Do and How Do They Do It? Structure 19, 1356-1369 https://doi.org/10.1016/j.str.2011.09.005
- Janmey PA and McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9, 1-34 https://doi.org/10.1146/annurev.bioeng.9.060906.151927
- del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM and Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323, 638-641 https://doi.org/10.1126/science.1162912
- Horwitz A, Duggan K, Buck C, Beckerle MC and Burridge K (1986) Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature 320, 531-533 https://doi.org/10.1038/320531a0
- Yao M, Qiu W, Liu R et al (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5, 4525 https://doi.org/10.1038/ncomms5525
- Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS and Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23, 1024-1030 https://doi.org/10.1016/j.cub.2013.04.049
- Coon BG, Baeyens N, Han J et al (2015) Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol 208, 975-986 https://doi.org/10.1083/jcb.201408103
- Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426-431 https://doi.org/10.1038/nature03952
- Robertson IB and Rifkin DB (2016) Regulation of the Bioavailability of TGF-beta and TGF-beta-Related Proteins. Cold Spring Harb Perspect Biol 8, a021907 https://doi.org/10.1101/cshperspect.a021907
- Hinz B (2015) The extracellular matrix and transforming growth factor-beta1: Tale of a strained relationship. Matrix Biol 47, 54-65 https://doi.org/10.1016/j.matbio.2015.05.006
- Buscemi L, Ramonet D, Klingberg F et al (2011) The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol 21, 2046-2054 https://doi.org/10.1016/j.cub.2011.11.037
- Dong X, Zhao B, Iacob RE et al (2017) Force interacts with macromolecular structure in activation of TGF-beta. Nature 542, 55-59 https://doi.org/10.1038/nature21035
- Lenting PJ, Christophe OD and Denis CV (2015) von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 125, 2019-2028 https://doi.org/10.1182/blood-2014-06-528406
- Springer TA (2014) von Willebrand factor, Jedi knight of the bloodstream. Blood 124, 1412-1425 https://doi.org/10.1182/blood-2014-05-378638
- Walker RG, Willingham AT and Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287, 2229-2234 https://doi.org/10.1126/science.287.5461.2229
- Jin P, Bulkley D, Guo Y et al (2017) Electron cryomicroscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118-122 https://doi.org/10.1038/nature22981
- Tuthill JC and Wilson RI (2016) Parallel Transformation of Tactile Signals in Central Circuits of Drosophila. Cell 164, 1046-1059 https://doi.org/10.1016/j.cell.2016.01.014
- Zhang W, Cheng LE, Kittelmann M et al (2015) Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell 162, 1391-1403 https://doi.org/10.1016/j.cell.2015.08.024
- Brohawn SG, Campbell EB and MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516, 126-130 https://doi.org/10.1038/nature14013
- Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352, 20-32 https://doi.org/10.1111/nyas.12874
- Arnadottir J and Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39, 111-137 https://doi.org/10.1146/annurev.biophys.37.032807.125836
- Sukharev SI, Blount P, Martinac B, Blattner FR and Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265-268 https://doi.org/10.1038/368265a0
- Denisov IG, Grinkova YV, Lazarides AA and Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126, 3477-3487 https://doi.org/10.1021/ja0393574
- Rawson S, Davies S, Lippiat JD and Muench SP (2016) The changing landscape of membrane protein structural biology through developments in electron microscopy. Mol Membr Biol 33, 12-22 https://doi.org/10.1080/09687688.2016.1221533
- Patel AJ, Honore E, Maingret F et al (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17, 4283-4290 https://doi.org/10.1093/emboj/17.15.4283
- Maingret F, Patel AJ, Lesage F, Lazdunski M and Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274, 26691-26696 https://doi.org/10.1074/jbc.274.38.26691
- Maingret F, Fosset M, Lesage F, Lazdunski M and Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274, 1381-1387 https://doi.org/10.1074/jbc.274.3.1381
- Lesage F, Terrenoire C, Romey G and Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq proteincoupled receptors. J Biol Chem 275, 28398-28405 https://doi.org/10.1074/jbc.M002822200
- Brohawn SG, Su Z and MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111, 3614-3619 https://doi.org/10.1073/pnas.1320768111
- Dong YY, Pike AC, Mackenzie A et al (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347, 1256-1259 https://doi.org/10.1126/science.1261512
- Coste B, Mathur J, Schmidt M et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55-60 https://doi.org/10.1126/science.1193270
- Ranade SS, Qiu Z, Woo SH et al (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111, 10347-10352 https://doi.org/10.1073/pnas.1409233111
- Li J, Hou B, Tumova S et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515, 279-282 https://doi.org/10.1038/nature13701
- Ranade SS, Woo SH, Dubin AE et al (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121-125 https://doi.org/10.1038/nature13980
- Woo SH, Ranade S, Weyer AD et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622-626 https://doi.org/10.1038/nature13251
- Nonomura K, Woo SH, Chang RB et al (2017) Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541, 176-181 https://doi.org/10.1038/nature20793
- Syeda R, Florendo MN, Cox CD et al (2016) Piezo1 Channels Are Inherently Mechanosensitive. Cell Rep 17, 1739-1746 https://doi.org/10.1016/j.celrep.2016.10.033
- Zhao Q, Zhou H, Chi S et al (2018) Structure and mechanogating mechanism of the Piezo1 channel. Nature 554, 487-492 https://doi.org/10.1038/nature25743
- Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A and Ward AB (2018) Structure of the mechanically activated ion channel Piezo1. Nature 554, 481-486 https://doi.org/10.1038/nature25453
- Liang X and Howard J (2018) Structural Biology: Piezo Senses Tension through Curvature. Curr Biol 28, R357-R359 https://doi.org/10.1016/j.cub.2018.02.078
- Guo YR and MacKinnon R (2017) Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife 6, e33660 https://doi.org/10.7554/eLife.33660
- Chesler AT and Szczot M (2018) Portraits of a pressure sensor. Elife 7, e34396 https://doi.org/10.7554/eLife.34396
- Shiu JY, Aires L, Lin Z and Vogel V (2018) Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat Cell Biol 20, 262-271 https://doi.org/10.1038/s41556-017-0030-y
- Elosegui-Artola A, Andreu I, Beedle AEM et al (2017) Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 171, 1397-1410 e1314 https://doi.org/10.1016/j.cell.2017.10.008