DOI QR코드

DOI QR Code

Cellular machinery for sensing mechanical force

  • Received : 2018.09.19
  • Published : 2018.12.31

Abstract

For mechanical force to induce changes in cellular behaviors, two main processes are inevitable; perception of the force and response to it. Perception of mechanical force by cells, or mechanosensing, requires mechanical force-induced conformational changes in mechanosensors. For this, at least one end of the mechanosensors should be anchored to relatively fixed structures, such as extracellular matrices or the cytoskeletons, while the other end should be pulled along the direction of the mechanical force. Alternatively, mechanosensors may be positioned in lipid bilayers, so that conformational changes in the embedded sensors can be induced by mechanical force-driven tension in the lipid bilayer. Responses to mechanical force by cells, or mechanotransduction, require translation of such mechanical force-induced conformational changes into biochemical signaling. For this, protein-protein interactions or enzymatic activities of mechanosensors should be modulated in response to force-induced structural changes. In the last decade, several molecules that met the required criteria of mechanosensors have been identified and proven to directly sense mechanical force. The present review introduces examples of such mechanosensors and summarizes their mechanisms of action.

Keywords

References

  1. Luu YK, Capilla E, Rosen CJ et al (2009) Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 24, 50-61 https://doi.org/10.1359/jbmr.080817
  2. Song G, Ju Y, Shen X, Luo Q, Shi Y and Qin J (2007) Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces 58, 271-277 https://doi.org/10.1016/j.colsurfb.2007.04.001
  3. Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K and McIntyre P (2017) Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 23, 850-868 https://doi.org/10.1016/j.molmed.2017.07.007
  4. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T and Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci U S A 97, 9052-9057 https://doi.org/10.1073/pnas.97.16.9052
  5. Nesbitt WS, Westein E, Tovar-Lopez FJ et al (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15, 665-673 https://doi.org/10.1038/nm.1955
  6. Beck FX, Burger-Kentischer A and Muller E (1998) Cellular response to osmotic stress in the renal medulla. Pflugers Arch 436, 814-827 https://doi.org/10.1007/s004240050710
  7. DuFort CC, Paszek MJ and Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12, 308-319
  8. van Helvert S, Storm C and Friedl P (2018) Mechanoreciprocity in cell migration. Nat Cell Biol 20, 8-20 https://doi.org/10.1038/s41556-017-0012-0
  9. Engler AJ, Sen S, Sweeney HL and Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 https://doi.org/10.1016/j.cell.2006.06.044
  10. Hamill OP and Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81, 685-740 https://doi.org/10.1152/physrev.2001.81.2.685
  11. Hu X, Margadant FM, Yao M and Sheetz MP (2017) Molecular stretching modulates mechanosensing pathways. Protein Sci 26, 1337-1351 https://doi.org/10.1002/pro.3188
  12. Gillespie PG and Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413, 194-202 https://doi.org/10.1038/35093011
  13. Nyholm TK, Ozdirekcan S and Killian JA (2007) How protein transmembrane segments sense the lipid environment. Biochemistry (Mosc) 46, 1457-1465 https://doi.org/10.1021/bi061941c
  14. Anishkin A, Loukin SH, Teng J and Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111, 7898-7905 https://doi.org/10.1073/pnas.1313364111
  15. Haswell ES, Phillips R and Rees DC (2011) Mechanosensitive Channels: What Can They Do and How Do They Do It? Structure 19, 1356-1369 https://doi.org/10.1016/j.str.2011.09.005
  16. Janmey PA and McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9, 1-34 https://doi.org/10.1146/annurev.bioeng.9.060906.151927
  17. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM and Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323, 638-641 https://doi.org/10.1126/science.1162912
  18. Horwitz A, Duggan K, Buck C, Beckerle MC and Burridge K (1986) Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature 320, 531-533 https://doi.org/10.1038/320531a0
  19. Yao M, Qiu W, Liu R et al (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5, 4525 https://doi.org/10.1038/ncomms5525
  20. Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS and Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23, 1024-1030 https://doi.org/10.1016/j.cub.2013.04.049
  21. Coon BG, Baeyens N, Han J et al (2015) Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol 208, 975-986 https://doi.org/10.1083/jcb.201408103
  22. Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426-431 https://doi.org/10.1038/nature03952
  23. Robertson IB and Rifkin DB (2016) Regulation of the Bioavailability of TGF-beta and TGF-beta-Related Proteins. Cold Spring Harb Perspect Biol 8, a021907 https://doi.org/10.1101/cshperspect.a021907
  24. Hinz B (2015) The extracellular matrix and transforming growth factor-beta1: Tale of a strained relationship. Matrix Biol 47, 54-65 https://doi.org/10.1016/j.matbio.2015.05.006
  25. Buscemi L, Ramonet D, Klingberg F et al (2011) The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol 21, 2046-2054 https://doi.org/10.1016/j.cub.2011.11.037
  26. Dong X, Zhao B, Iacob RE et al (2017) Force interacts with macromolecular structure in activation of TGF-beta. Nature 542, 55-59 https://doi.org/10.1038/nature21035
  27. Lenting PJ, Christophe OD and Denis CV (2015) von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 125, 2019-2028 https://doi.org/10.1182/blood-2014-06-528406
  28. Springer TA (2014) von Willebrand factor, Jedi knight of the bloodstream. Blood 124, 1412-1425 https://doi.org/10.1182/blood-2014-05-378638
  29. Walker RG, Willingham AT and Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287, 2229-2234 https://doi.org/10.1126/science.287.5461.2229
  30. Jin P, Bulkley D, Guo Y et al (2017) Electron cryomicroscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118-122 https://doi.org/10.1038/nature22981
  31. Tuthill JC and Wilson RI (2016) Parallel Transformation of Tactile Signals in Central Circuits of Drosophila. Cell 164, 1046-1059 https://doi.org/10.1016/j.cell.2016.01.014
  32. Zhang W, Cheng LE, Kittelmann M et al (2015) Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell 162, 1391-1403 https://doi.org/10.1016/j.cell.2015.08.024
  33. Brohawn SG, Campbell EB and MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516, 126-130 https://doi.org/10.1038/nature14013
  34. Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352, 20-32 https://doi.org/10.1111/nyas.12874
  35. Arnadottir J and Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39, 111-137 https://doi.org/10.1146/annurev.biophys.37.032807.125836
  36. Sukharev SI, Blount P, Martinac B, Blattner FR and Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265-268 https://doi.org/10.1038/368265a0
  37. Denisov IG, Grinkova YV, Lazarides AA and Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126, 3477-3487 https://doi.org/10.1021/ja0393574
  38. Rawson S, Davies S, Lippiat JD and Muench SP (2016) The changing landscape of membrane protein structural biology through developments in electron microscopy. Mol Membr Biol 33, 12-22 https://doi.org/10.1080/09687688.2016.1221533
  39. Patel AJ, Honore E, Maingret F et al (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17, 4283-4290 https://doi.org/10.1093/emboj/17.15.4283
  40. Maingret F, Patel AJ, Lesage F, Lazdunski M and Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274, 26691-26696 https://doi.org/10.1074/jbc.274.38.26691
  41. Maingret F, Fosset M, Lesage F, Lazdunski M and Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274, 1381-1387 https://doi.org/10.1074/jbc.274.3.1381
  42. Lesage F, Terrenoire C, Romey G and Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq proteincoupled receptors. J Biol Chem 275, 28398-28405 https://doi.org/10.1074/jbc.M002822200
  43. Brohawn SG, Su Z and MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111, 3614-3619 https://doi.org/10.1073/pnas.1320768111
  44. Dong YY, Pike AC, Mackenzie A et al (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347, 1256-1259 https://doi.org/10.1126/science.1261512
  45. Coste B, Mathur J, Schmidt M et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55-60 https://doi.org/10.1126/science.1193270
  46. Ranade SS, Qiu Z, Woo SH et al (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111, 10347-10352 https://doi.org/10.1073/pnas.1409233111
  47. Li J, Hou B, Tumova S et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515, 279-282 https://doi.org/10.1038/nature13701
  48. Ranade SS, Woo SH, Dubin AE et al (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121-125 https://doi.org/10.1038/nature13980
  49. Woo SH, Ranade S, Weyer AD et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622-626 https://doi.org/10.1038/nature13251
  50. Nonomura K, Woo SH, Chang RB et al (2017) Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541, 176-181 https://doi.org/10.1038/nature20793
  51. Syeda R, Florendo MN, Cox CD et al (2016) Piezo1 Channels Are Inherently Mechanosensitive. Cell Rep 17, 1739-1746 https://doi.org/10.1016/j.celrep.2016.10.033
  52. Zhao Q, Zhou H, Chi S et al (2018) Structure and mechanogating mechanism of the Piezo1 channel. Nature 554, 487-492 https://doi.org/10.1038/nature25743
  53. Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A and Ward AB (2018) Structure of the mechanically activated ion channel Piezo1. Nature 554, 481-486 https://doi.org/10.1038/nature25453
  54. Liang X and Howard J (2018) Structural Biology: Piezo Senses Tension through Curvature. Curr Biol 28, R357-R359 https://doi.org/10.1016/j.cub.2018.02.078
  55. Guo YR and MacKinnon R (2017) Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife 6, e33660 https://doi.org/10.7554/eLife.33660
  56. Chesler AT and Szczot M (2018) Portraits of a pressure sensor. Elife 7, e34396 https://doi.org/10.7554/eLife.34396
  57. Shiu JY, Aires L, Lin Z and Vogel V (2018) Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat Cell Biol 20, 262-271 https://doi.org/10.1038/s41556-017-0030-y
  58. Elosegui-Artola A, Andreu I, Beedle AEM et al (2017) Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 171, 1397-1410 e1314 https://doi.org/10.1016/j.cell.2017.10.008