• Title/Summary/Keyword: Force model

Search Result 5,832, Processing Time 0.033 seconds

Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW (동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Fast Force Algorithm of End Milling Processes and Its Application to the NC Verification System (엔드밀링의 효과적인 절삭력 모델과 NC 검증시스템으로의 응용)

  • 김찬봉;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1555-1562
    • /
    • 1995
  • This study represents the non-dimensional cutting force model. With the non-dimensional cutting force model it is possible to estimate efficiently the maximum cutting force during one revolution of cutter. Using the non-dimensional cutting force model, the feed rate and spindle speed are adjusted so as to satisfy the maximum cutting force and maximum machining error. To verify the accuracy and efficiency of the non-dimensional cutting force model, a series of experiments were conducted, and experimental results proved and verified the non-dimensional cutting force model. The NC toolpath verification system developed in this paper uses the non-dimensional cutting force model, so that it is effective for calculating the cutting force and adjusting the cutting conditions.

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

Cutting Force Prediction in End Milling of STS 304 Considering Tool Wear (STS 304 엔드밀 가공시 공구마멸을 고려한 절삭력 예측)

  • Kim, Tae-Young;Jeong, Eun-Cheol;Shin, Hyung-Gon;Oh, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.46-53
    • /
    • 1999
  • Cutting force characteristics is closely related with tool wear on the end milling. And it is found that the tool wear can be properly obtained by observation through the tool-maker's microscope when STS 304 is cut using an end mill. The relationship between the tool wear and the cutting force is established based on data obtained from a series of experiments. A cutting force model can be derived from basic cutting force model using parasitic force components of this tool wear. The results of th simulation using the cutting force model proposed in this paper were verified experimentally and a good agreement was partly obtained. The proposed model is capable of predicting increased cutting force due to tool wear.

  • PDF

A Methodology for Creating a Simulation Model for a Agent Based and Object-oriented Logistics Support System (군수지원시스템을 위한 에이전트 기반의 객체 지향 시뮬레이션 모델 아키텍처 설계 방법론)

  • Chung, Yong-H.;Hwam, Won-K.;Park, Sang-C.
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Proposed in the paper is an agent based and object-oriented methodology to create a virtual logistics support system model. The proposed virtual logistics support system model consists of three types of objects: the logistics force agent model(static model), the military supplies transport manager model(function model), the military supplies state manager model(dynamic model). A logistic force agent model consists of two agent: main function agent and function agent. To improve the reusability and composability of a logistics force agent model, the function agent is designed to adapt to different logistics force agent configuration. A military supplies transport manager is agent that get information about supply route, make decisions based on decision variables, which are maintained by the military supplies state manager, and transport military supplies. A military supplies state manager is requested military supplies from logistics force agent, provide decision variables such as the capacity, order of priority. For the implementation of the proposed virtual logistics force agent model, this paper employs Discrete Event Systems Specification(DEVS) formalism.

Development of Cutting Simulation System for Prediction and Regulation of Cutting Force in CNC Machining (CNC 가공에서 절삭력 예측과 조절을 위한 절삭 시뮬레이션 시스템 개발)

  • 고정훈;이한울;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.3-6
    • /
    • 2002
  • This paper presents the cutting simulation system for prediction and regulation of cutting force in CNC machining. The cutting simulation system includes geometric model, cutting force model, and off-line fred rate scheduling model. ME Z-map(Moving Edge node Z-map) is constructed for cutting configuration calculation. The cutting force models using cutting-condition-independent coefficients are developed for flat-end milling and ball-end milling. The off-line feed rate scheduling model is derived from the developed cutting force model. The scheduled feed rates are automatically added to a given set of NC code, which regulates the maximum resultant cutting force to the reference force preset by an operator. The cutting simulation system can be used as an effective tool for improvement of productivity in CNC machining.

  • PDF

Development of mean specific cutting pressure model for cutting force analysis in the face milling process (정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발)

  • Lee, B.C.;Hwang, J.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-25
    • /
    • 1994
  • In order to design and improve a new machine tool, there is a need for a better understanding of the cutting force. In this paper, the computer programs were developed to predict not only the mean specific cutting pressure but also the cutting force. The simulated cutting forces in X, Y, Z directions resulted form the developed cutting force model were compared with the measured cutting forces in the time and frequency domains. The simulated cutting forces resulted from the new cutting force model have a good agreement with the measured force in comparison with these resulted from the existing cutting force model.

  • PDF

An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model (자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석)

  • 백대균;김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

A Modeling of Impact Dynamics and its Application to Impact Force Prediction

  • Ahn Kil-Young;Ryu Bong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.422-428
    • /
    • 2005
  • In this paper, the contact force between two colliding bodies is modeled by using Hertz's force-displacement law and nonlinear damping function. In order to verify the appropriateness of the proposed contact force model, the drop type impact test is carried out for different impact velocities and different materials of the impacting body, such as rubber, plastic and steel. In the drop type impact experiment, six photo interrupters in series close to the collision location are installed to measure the velocity before impact more accurately. The characteristics of contact force model are investigated through experiments. The parameters of the contact force model are estimated using the optimization technique. Finally the estimated parameters are used to predict the impact force between two colliding bodies in opening action of the magnetic contactor, a kind of switch mechanism for switching electric circuits.