• Title/Summary/Keyword: Force measuring

Search Result 949, Processing Time 0.033 seconds

Development of Gripping Force Sensor for a Spindle Tool of BT50 (BT50용 스핀들 공구 파지력 검사를 위한 힘센서 개발)

  • Lee, Dae-Geon;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-46
    • /
    • 2021
  • In this paper, we describe the development of a force sensor to measure the tool gripping force of the BT50 spindle. The force sensor for a BT50 must be installed inside the gripping force tester; hence, it must be of an appropriate size and have a rated capacity suitable for measuring the gripping force. So, the structure of the force sensor for BT50 was modeled, the size of the sensing part was determined by structural analysis, and the force sensor was manufactured by attaching a strain gauge. The characteristic test results of the manufactured force sensor, indicated that the nonlinearity error, hysteresis error, and reproducibility errors were each within 0.91%, Therefore it was determined that the manufactured force sensor can be used for checking the spindle tool gripping force.

Development of Force Sensor to Measure Contact Force of Pantograph for High-Speed Train (고속철도용 판토그라프 접촉력 측정을 위한 스트레인 게이지 내장형 하중센서 개발)

  • Park, Chan-Kyoung;Kim, Young-Guk;Cho, Yong-Hyeon;Paik, Jin-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.488-492
    • /
    • 2010
  • In order to verify the performance of high-speed train and core equipments such as current collection system, sophisticated tests and evaluating procedures must be considered. In case of force sensor to test contact force of pantograph, it should customize the test instruments according to characteristics of pantograph. In this paper, the force sensor with a built-in strain-gauge which developed to improve measuring performance of contact force between the pantograph and catenary system is introduced. The test and evaluation results of force sensor's static and dynamic calibration with pantograph shows that its design is very suitable and applicable for on-line test. Henceforth, the force sensor will be applied to test interaction characteristics between the pantograph and catenary system on the high-speed line and expected by a part of measuring system for evaluating current collecting characteristics more reliably.

EVALUATION AND DEVELOPMENT OF DIGITAL DEVICE FOR MEASURING PROXIMAL TOOTH CONTACT TIGHTNESS (디지털 방식의 인접면 접촉강도 측정장치의 개발 및 평가)

  • Choi, Woo-Jin;Kim, Kyung-Hwa;Kim, Jin-A;Kang, Dong-Wan;Oh, Sang-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.687-695
    • /
    • 2007
  • Statement of problem: The proper contact relation between adjacent teeth in each arch plays an important role in the stability and maintenance of the integrity of the dental arches. Proximal contact has been defined as the area of a tooth that is in close association, connection, or touch with an adjacent tooth in the same arch. Purpose: The aim of this study was to develop a digital device for measuring the proximal tooth contact tightness by pulling a thin stainless steel strip (2mm wide, 0.03mm thick) inserted between proximal tooth contact. Material and method: This device consists of measuring part, sensor part, motor part and body part. The stainless steel strip was connected to a stain gauge. The strain gauge was designed to convert the frictional force into a compressive force. This compressive force was detected as a electrical signal and the electrical signal was digitalized by a A/D converter. The digital signals were displayed by a micro-processor. The pulling speed was 8mm/s. Results: For testing reliability of the device in vivo, two healthy young adults (A, B) participated in this experiment. The tightness of proximal tooth contact between the second premolar and the first molar of mandible (subject A) and maxilla (subject B) was measured fifteen times for three days at rest. We double-checked the accuracy of the device with a Universal Testing Machine. Output signals from the Universal Testing Machine and the measuring device were compared. Regression analysis showed high linearity between these two signals. In vivo test, no significant differences were found between measurements. Conclusion: This device has shown to he capable of producing reliable and reproducible results in measuring proximal tooth contact. Therefore, it was considered that this device was appropriate to apply clinically.

Development of the Medical Support Service Robot Using Ergonomic Design

  • Cho, Young-Chul;Jang, Jae-Ho;Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2660-2664
    • /
    • 2003
  • In this study, the concept of autonomous mobility is applied to a medical service robot. The aim of the development of the service robot is for the elderly assisting walking rehabilitation. This study aims that the service robot design parameter is proposed in ergonomic view. The walking assistant path pattern is derived from analyzing the elderly gait analysis. A lever is installed in the AMR in order to measure the pulling force and the leading force of the elderly. A lever mechanism is applied for walking assistant service of the AMR. This lever is designed for measuring the leading force of the elderly. The elderly adjusts the velocity of the robot by applying force to the lever. The action scope and the service mechanism of the robot are developed for considering and analyzing the elderly action patterns. The ergonomic design parameters, that is, dimensions, action scope and working space are determined based on the elderly moving scope. The gait information is acquired by measuring the guide lever force by load cells and working pattern by the electromyography signal.

  • PDF

Investigation of Generative Contactile Force of Frog Muscle under Electrical Stimulation

  • Park, Suk-Ho;Jee, Chang-Yeol;Kwon, Ji-Woon;Park, Sung-Jin;Kim, Byung-Kyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1914-1919
    • /
    • 2006
  • Recently, the microrobots powered by biological muscle actuators were proposed. Among the biological muscle actuators, frog muscle is well known as a good muscle actuator and has a large displacement, actuation forces and piezoelectric properties. Therefore, for the application of the biomimetic microrobot, this paper reports the electromechanical properties of frog muscle. First of all, the experimental setup has been established for measuring generative force of the frog muscle. Through the various electrical stimulating inputs to the frog muscle, we measured the contractile force of the frog muscle. From the measuring results, we found that the actuating contractile force responses of the frog muscle are determined by the amplitude, frequency, duty ratio, and wave form of the stimulation signal. This study will be beneficial for the development of the microrobot actuated by frog muscle.

Judgment Method of the Rehabilitation Extent using a Spherical Type Digital Finger Force Measuring System (구형 디지털 손가락 힘측정장치를 이용한 재활정도 판단 방법)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.729-735
    • /
    • 2014
  • This paper presents the judgment method of the rehabilitation extent using a spherical type digital finger force measuring system (SDFFMS). Stroke patients can't use their fingers because of the paralysis of their fingers, but they can recover with rehabilitative training. The SDFFMS has been already developed by Kim (Author of this paper), and the finger grasping forces of normal people and stroke patients could be measured using it. But the SDFFMS could be not used to judge the extent of their rehabilitation, because the judgment method using it is not yet developed. In this paper, the characteristics tests for the grasping forces of normal persons and stroke patients were performed using the SDFFMS, and the judgment method of the rehabilitation extent was developed using the results. The tests confirm that the rehabilitation extent of stroke patients could be judged using the developed judgment method.

Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement (고유진동수 기반 석션기초의 지반구속효과 분석)

  • Ryu, Moo Sung;Lee, Jun Shin;Lee, Jong Hwa;Seo, Yun Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

A Development of dynamic characteristics measuring system and linearization control method for Linear Pulse Motor (LPM의 동추력특성측정 및 선형화 제어기법 개발)

  • Kim, Moon-Hwan;Lee, Nam-Ki;Kim, Kook-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2146-2148
    • /
    • 1997
  • We had developed a prototype Linear Pulse Motor(LPM) for the linear motion actuator. In this paper, it is mentioned a new dynamic equations which is considered the nonlinearity of the thrust force of LPM. And a measuring method of ripples in the thrust forces is proposed and the ripples were measured in the laboratory. In the experimental results, it is shown the validity of the proposed measuring method for catching of the ripple values and waveforms in the thrust force.

  • PDF