• Title/Summary/Keyword: Force measurement

Search Result 1,614, Processing Time 0.044 seconds

A design of hybrid type linear motor and measurement of the thrust force characteristics (Hybrid type linear motor의 설계와 추력특성시험)

  • Kim, Moon-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2147-2153
    • /
    • 2009
  • A Hybrid type Linear Pulse Motor(LPM) for low cost is designed as single side stator structure. The static and dynamic characteristics measurement systems are designed. Experimental measurement systems, which measure the static and dynamic characteristic of the LPM, are uggested for the prototype LPM. It becomes known the values of the thrust forces. Finally the microstep drive method is adopted to the drive of prototype LPM. The waveform difference is measured between the microstep method and rectangular wave. From the experimental results, it can be confirmed that the repetitive ripple of the thrust force of the prototype LPM are reduced by taking the microstep drive method.

Control of a CNC Machining Center Using the Indirect Measurement of the Cutting Force (절삭력 간접 측정을 이용한 CNC공작기계 제어)

  • 송진일;손주형;권동수;김성권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.9-20
    • /
    • 1998
  • In recent manufacturing process, the increase of productivity has been attempted by reducing machining time with the increase of cutting force. However, the excessive increase of cutting force can cause tool breakage and have a bad effect on both manufacturing machine and workpiece. Thus, it is necessary to estimate and control the cutting force in real time during the process. In this study, use of disturbance observer is proposed for the indirect cutting force estimation. The estimated cutting force is used for the real-time control of feedrate, making the actual cutting force follow the reference force command. Since the suggested method does not need an expensive sensor like a dynamometer, the method is expected to be used practically. Since the actual cutting force follow the reference force, resulting the reducing of the machining time the increase of productivity are also expected, and the quality of cutting surface has been improved due to the adjusted feedrate. Besides, an actual constant cutting force guarantees the prevention of tool breakage. To show the effectiveness of the suggested cutting force control method, an experimental setup has been made without sensor and applied to several workpieces. Experiments show that the suggested method is effective to cutting force control of a CNC machining center.

  • PDF

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.

Control of Delta-Wing Vortex by Apex Strake

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • The vortex flow characteristics of a double-delta wing, which can change the incidence angle of its apex strake was investigated through the wing-surface pressure measurement and the particle image velocimetry(PIV) measurement of the wing-leeward flow region. The apex strake has sharp edges and can change its incidence angle with a hinge line at the 23% chord position measured from the apex of the main wing. The present study revealed that the incidence-angle change of the apex strake could greatly alter the vortex flow pattern around the double-delta wing and the wing-surface pressure distribution, which suggested that the apex strake could be used as an effective device for the active control of delta-wing vortex flow.

Cantilever deflection measurement system for AFM with PSD (PSD를 이요한 AFM용 미세 탐촉자의 변위측정장치)

  • 김홍준;장경영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.31-35
    • /
    • 2000
  • A cantilever deflection measurement system for AFM(atomic force microscope) was constructed by the laser deflection method using LEP type PSD. Design process including sensitivity analysis was presented and the performance of the system was demonstrated by several experiments using a sample specimen with 50nm-step on the surface. The measured displacement-amplification-factor showed good agreement with the expected one with about 8% deviation. The step height measurement data were compared to what were acquired by commercial AFM, and the result showed that there were about 5nm-deviation between the two data. These results satisfies our expectation in the stage of system design.

  • PDF

Nanomolding of High Density Patterned Media and Measurement of Magnetic Domain (고밀도 패턴드 미디어 성형 및 자성 도메인 평가에 관한 연구)

  • Yang, J.M.;Lee, N.S.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.305-308
    • /
    • 2008
  • In this paper, the magnetic domain states and recordability of the molded magnetic nanopillars were examined and analyzed by magnetic force microscopy (MFM) measurement. We focused on the some of the technical issues for MFM measurement regarding the lift height and geometry of the MFM tip. The effects of MFM tip shape and lift height on the MFM resolution were analyzed. Finally, we showed that the magnetic film on each molded nanopillars has a single magnetic domain state.

  • PDF

Development of a force measurement device for curling sweeping with load cells (로드셀을 이용한 컬링 스위핑 힘 측정 장치 개발)

  • Lee, Sangcheol;Kim, Taewhan;Kil, Sekee;Choi, Sanghyup
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.49-56
    • /
    • 2017
  • Curling sweeping is one of important motion to control the position of the curling stone, and sweeping speed and applied force to the broom pad are major research subjects. In this study, a device was developed to measure the force applied to the curling broom pad in curling sweeping motion, and two load cells were mounted between the broom pad and pad holder. Analog signals generated from the load cells were sampled about 300 times per second using a micro controller, and then converted to 10-bit digital signals. Calibration of the load cell and set up of regression equations to convert the measured electrical signals into mass (force) was done by three M1 class weights, and the developed system was designed as wearable device to minimize increasing of total weight of the broom. Same force was applied to the developed system and a force plate that was using as a reference force measurement system in field of sports, and the difference between the measured values were showed about $0.909{\pm}1.375N$(mean and standard deviation). The developed system could be applied other kinds of study which required force measurement function similar to sweeping motion.