• Title/Summary/Keyword: Force curve

Search Result 655, Processing Time 0.025 seconds

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Optimal Design of Interior Permanent Magnet Synchronous Machines Consideration of Magnet BH Characteristic with Different Rotor Type using Response Surface Methodology (반응표면분석법을 이용한 영구자석의 형상 및 특성에 따른 매입형 영구자석 동기기의 최적 설계)

  • Im, Young-Hun;Jang, Seok-Myoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1080-1089
    • /
    • 2013
  • Interior Permanent Magnet Synchronous Machines (IPMSMs) with rare earth magnet are widely used in electric vehicles and hybrid electric vehicles. IPMSMs having high efficiency, high torque, and a wide speed range are employed in propulsion system. And the rotor in an IPMSM is generally made of a rare earth magnet to achieve a large energy product and high torque. This paper discusses issues regarding design and performance of IPMSMs using different factors of BH magnetic characteristic. It is necessary to choose factors of magnetic material according to permanent magnet shape in rotor for high performance. Response Surface Methodology (RSM) is selected to obtain factors of magnetic material according to variety of rotor shapes. The RSM is a collection of mathematical and statistical techniques useful for the analysis of problems in which a response of interest in influenced by several variables and the objective is to optimize response. Therefore, it is necessary to analyze the torque characteristics of an IPMSM having magnet BH hysteresis curve with different rotor shape. Factors of residual flux density (Br) factor and intrinsic coercive force (Hc) are important parameters in RSM for rotor shape. The rotor shapes for IPMSMs having magnet BH characteristic were investigated using the RSM, and three shapes were analyzed in detail using FEA. The results lead to design consequence of IPMSMs in the various rare earth magnet materials.

An Analysis of Nursing Needs for Hospitalized Cancer Patients;Using Data Mining Techniques (데이터 마이닝을 이용한 입원 암 환자 간호 중증도 예측모델 구축)

  • Park, Sun-A
    • Asian Oncology Nursing
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2005
  • Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.

  • PDF

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone

  • Lin, Zhaofei;Liu, Yuqing;He, Jun
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1369-1389
    • /
    • 2015
  • In order to investigate the behaviour of lying multi-stud connectors in cable-pylon anchorage zone, twenty-four push-out tests are carried out with different stud numbers and diameters. The effect of concrete block width and tensile force on shear strength is investigated using the developed and verified finite element model. The results show that the shear strength of the lying multi-stud connectors is reduced in comparison with the lying single-stud connector. The reduction increases with the increasing of the number of studs in the vertical direction. The influence of the stud number on the strength reduction of the lying multi-stud connectors is decreased under combined shear and tension loads compared with under pure shear. Yet, due to multi-stud effect, they still can't be ignored. The concrete block width has a non-negligible effect on the shear strength of the lying multi-stud connectors and therefore should be chosen properly when designing push-out specimens. No obvious difference is observed between the strength reductions of the studs with 22 mm and 25 mm diameters. The shear strengths obtained from the tests are compared with those predicted by AASHTO LRFD and Eurocode 4. Eurocode 4 generally gives conservative predictions of the shear strength, while AASHTO LRFD overestimates the shear strength. In addition, the lying multi-stud connectors with the diameters of 22 m and 25 mm both exhibit adequate ductility according to Eurocode 4. An expression of load-slip curve is proposed for the lying multi-stud connectors and shows good agreement with the test results.

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Analytical Modeling for Reinforced Concrete Columns with Relaxed Section Details

  • Kim, Taewan;Chu, Yurim;Park, Hong-Gun
    • Architectural research
    • /
    • v.19 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • In earthquake engineering, dynamic analyses are usually conducted by using a nonlinear analytical model of the entire building in order to identify the performance against earthquakes. At the same time, a large number of dynamic analyses are required to consider uncertainties on analytical models and ground motions. Therefore, it is necessary for the analytical model to be adequate, that is to say, the runtime should not be too long as the entire building is modeled to be in much detail, or the nonlinear model should not yield outputs very far from the actual ones by excluding important behaviors too much. The analytical model is usually developed based on experimental results, which have been already conducted for reinforced concrete columns with relaxed details. Therefore, this study aimed at making analytical models to be able to simulate the hysteretic behavior of the columns simply and easily. The analytical model utilizes a lumped hinge model to represent nonlinear moment-rotation hysteretic behavior of RC columns, which is feasible for nonlinear dynamic analyses usually conducted in earthquake engineering and for matching the analytical model to test results. For the analytical model, elements and material models provided by OpenSees are utilized. The analytical model can define the envelope curve, pinching, and unloading stiffness deterioration, but shortcoming of this model is not to be able to consider axial force-moment interaction directly and to simulate strength deterioration after post-capping completely. However, the analytical model can still represent test results well by considering that the goal of this study is to propose a general way to represent the hysteretic behavior of RC columns with relaxed details, not to provide parameters for a refined hysteretic model that can be just applied case by case.

In-plane Inelastic Buckling Strength of Parabolic Arch Ribs Subjected Distributed Loading Along the Axis (아치 리브를 따라 작용하는 등분포 하중을 받는 포물선 아치 리브의 비탄성 면내좌굴 강도)

  • Yoon, Ki-Yong;Moon, Ji-Ho;Kim, Sung-Hoon;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.55-62
    • /
    • 2005
  • Parabolic arch ribs are widely used in practical. In case of circular arch ribs. Inelastic in-plane buckling behaviors were investigated by Trahair(1996). Recently Yong-lin Pi & Bradford(2004) investigated about in-plane design equation for circular arch ribs. In $1970{\sim}1980$. In-plane buckling strength about parabolic arch ribs were studied by some japan researchers (Sinke, Kuranishi). Study results of Sinke & kuranishi are only valid for rise-span ratio $0.1{\sim}0.2$. In this paper. The researchers investigated about in-plane inelastic buckling behaviors of parabolic arch ribs having rise-span ratio from 0.1 to 0.4. From the results. When the rise-span ratio increase, flexural moments increase and influence of axial force to in-plane buckling strength decrease. Finally, buckling curves for parabolic arch ribs subjected distributed loading along the axis were suggested.

Interaction of Antihistaminics with Muscarinic Receptor (III) - Relationship between binding and functional in vitro data -

  • Lee, Shin-Woong;Park, Young-Joo
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.181-187
    • /
    • 1991
  • The muscarinic antagonist 1-[benzilic 4, 4'-$[^3H]$ QUINUCLIDINYL BENZILATE $([^3H]$ QNB) bound to a single class of muscarinic receptors with high affinity in rabbit ileal membranes. The $K_D\;and\;B_{ max}$ values for $([^3H]$ QNB calculated from analysis of saturation isotherms were 52.5 pM AND 154 fmol/mg, respectively. Chlopheniramine (CHP), histamine $H_1$ blocker, increased $K_D$ vlue for $([^3H]$QNB without affecting the binding site concentrations and Hill coefficient. The $K_i$ value of CHP for inhibition of $([^3H]$QNB binding in ileal membranes was 1.44\mu{M}$ and the pseudo-Hill coefficient for CHP was close to unit. In the functional assay carbachol, muscarinic agonist, increased the contractile force of ileum with $ED_{50}$ value of $0.11\mu{M}$. CHP caused the rightward shift of the dose-response curve to carbachol. The $pA_2$ value of CHP determined from Schild analysis of carbacholinduced contraction was 5.77 and the slope was unity indicating competitive antagonism with carbachol. The dissociation constant $(K_i)$ of CHP obtained in competitive experiments with $([^3H]$ QNB was similar to the $K_A$ value (1.69 \mu{M)}$ of CHP as inhibitor of carbachol induced contraction in rabbit ileum. This result suggest that the binding of $H_i$ blocker. CHP, vs $([^3H]$QNB to muscarinic receptors in ileal membranes represents an interaction with a receptor of physiological relevance.

  • PDF