• Title/Summary/Keyword: Force component

Search Result 704, Processing Time 0.034 seconds

A Heuristic Approach for an Layout and Sizing of an Ejector Pin (사출 금형의 밀핀 설계를 위한 경험적 설계 접근법)

  • 이희성;변철웅;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.112-121
    • /
    • 2004
  • As customers demands are rapidly changing, a product life cycle is getting shorter and a product model is forced to be changed frequently. An ejecting design system becomes more important for high productivity to eject a product in high temperature without any damage. For example, an ejector pin that is a key component of the system can cause high local stresses and strains in the molding at the time of ejection. The number, the size, and the location of pins are important to make a smooth ejection. Therefore we propose an analytical approach with the aid of designer’s experience to calculate a total release force and pressure distribution so that the number, the size, and the location of pins can be easily determined. As a part of the result, the design system is built by Intent! with AutoCAD 2000 and a video player deck example is presented to verify the approach.

Development of Solenoid Valve for the Exhaust Brake of Diesel Engines (디젤차량 배기 브레이크용 솔레노이드 밸브의 개발)

  • Yun, S.N.;Ham, Y.B.;Jo, J.D.;Ryu, B.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.19-24
    • /
    • 2003
  • Exhaust brake system for Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with on-off solenoid. Exhaust brake valve which is core component of exhaust brake system should have characteristics such as high reliability and long life. In this paper. exhaust brake valve with on-off solenoid which is used for vehicle brake system was studied. For the performance evaluation of on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. As a basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve with on-off solenoid were suggested and the performance of the pneumatic valve was evaluated through tests.

  • PDF

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

Monitoring of Chatter Vibration by Frequency Analysis of AE Signals (AE 신호의 주파수분석에 의한 Chatter 진동의 감시)

  • 조대현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 2000
  • A machine tool generally has some serious stability problems in the form of tool chatter during the cutting process. Chatter vibration deteriorates the surface finish, reduce tool and machine life, accelerates machine tool system component wear, and may lead to an unacceptable noise sound in the working environment. In this study, the behavior of spectral density of AE signal and principal cutting force signal in order to monitor the chatter vibration in the cutting process has been investigated. From the results, the reliability of proposed monitoring method has been confirmed.

  • PDF

Positional Stability Analysis of Trailing Aircraft in Formation Flight (편대비행에서 후방 항공기의 위치 안전성 분석)

  • Cho, Hwan Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.19-24
    • /
    • 2016
  • Positional stability analysis based on aerodynamic forces and induced moments of formation flight using two small aircraft models is presented. The aerodynamic force and moments of the trailing aircraft are analyzed in the aspect of flight stability. The induced moments with the change of local flow direction by wing-tip vortex from the leading aircraft can affect the flight positional stability of aircraft in closed formation flight. Aerodynamic forces and moments of trailing aircraft model are measured by 6-component internal balance at the 49 locations with vertical and lateral space between two aircraft models. Results are shown that the positional stability of trailing aircraft in formation flight can be analyzed by positional stability derivatives with vertical and lateral space. It is concluded that flying positions can be important factors for aircraft position stability due to induced aerodynamic force and moments with vertical and lateral spacing by the variation of flow pattern from the leading aircraft in formation flight.

How Birds and Insects Fly (곤충과 새의 비행방법)

  • Hong, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.130-143
    • /
    • 2007
  • Using steady state aerodynamic theories, it has been claimed that insects and birds cannot fly. To make matters worse, insects and birds fly at low Reynolds numbers. Therefore, a recurring theme in the literature is the importance of understanding unsteady aerodynamic effect and how the vortices behave when they separate from the moving surface that created them. In flapping flight, birds and insects can modify wing beat amplitude, stroke angle, wing planform area, angle of attack, and to a lesser extent flapping frequency to optimize the generation of lift force. Some birds are thought to employ two different gaits(a vortex ring gait and a continuous vortex gait) and unsteady aerodynamic effect(Clap and fling, Delayed stall, Wake capture and Rotational Circulation) in flapping flight. Leading edge vortices may produce an increase in lift. The trailing edge vortex could be an important component in gliding flight. Tip vortices in hovering support the body weight of the hummingbirds. Thus, this study investigated how insects and birds generate lift at low Reynolds numbers. This research is written to further that as yet incomplete understanding.

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.

Analysis of the Eccentric Characteristics of the Brushless Motor by the Rotor Structure (회전자 구조에 따른 브러시리스 모터 편심 특성 분석)

  • Son, Byoung-Ook;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.156-163
    • /
    • 2010
  • The brushless motor is getting widely applied to the automotive component with the advantage of the high efficiency, high reliability and etc.. Most of the motor applications require the low vibration and acoustic noise. The cogging torque is the one of the main cause of the noise and vibration. The step-skewed rotor is used to reduce the cogging torque. We analyze the characteristics of the step-skewed rotor and non skewed rotor with the same stator by using 2-dimensional FEM. And then we analyze the characteristics variation according to the rotor eccentricity. The prototype is made and tested. As the results, the step-skewed rotor structure reduce the cogging torque and local radial force but it is more sensitive to rotor eccentricity.

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

Case_study of detecting loose part by acceleration signal (가속도 충격파형을 이용한 기기의 결함 위치분석 및 진단사례)

  • Yoo, Mu-Sang;Park, Seung-Do;Park, Hyeon-Cheol;Choi, Nak-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.463-468
    • /
    • 2007
  • The abnormal sound of generator frame is analyzed by a acceleration signal. The spike-like time signal is major characteristics of impacting force. The distributional map of vibration level is one of visualization method. With map, noise source was easily detected. After de_assembly of generator, loose part of internal component is the source of impact force by mechanical movement of stator inherently. In contact condition of part with clearance, the level of impact signal is different at each revolution and impact signal did not happens periodically.

  • PDF