• 제목/요약/키워드: Force calibration

검색결과 157건 처리시간 0.023초

편심하중 요소를 활용한 방수형 다분력 검력계 개발 (Development of a Multi-Component Waterproof Type Force Sensor Devised with Column Elements Under Eccentric Load)

  • 김효철;신창환;유성선;함연재
    • 대한조선학회논문집
    • /
    • 제61권3호
    • /
    • pp.200-207
    • /
    • 2024
  • A multi-component force sensor has been developed to measure force and moment components in high-speed flow media for submerged models. The size of the test model is determined based on the Reynolds number of the model at the test speed and expected blockage effect. A two-component force sensor unit has been created by assembling pairs of column elements arranged symmetrically under an eccentric load. The six-component force sensor is constructed with symmetric arrangements of two-component force sensor units in a rectangular plane. The signals generated from the strain gauges attached to the surface of the elements can be converted into force signals. The performance of the waterproof six-component force sensor has been evaluated through calibration. A simplified interference decomposition procedure has been introduced to increase the accuracy of measurement.

고속가공에서 가공성 평가를 위한 3축 공구동력계 개발 (Development of 3-Component tool Dynamometer for Evaluation of Machinability in High Speed Machining)

  • 강명창;김정석;이득우;이기용;김정훈
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.11-18
    • /
    • 1999
  • Recently high speed machining is being studied actively to reduce machining time and to improve machining precision. To perform efficient high speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force. To measure cutting forces in high speed machining, dynamometer which has high natural frequency was newly designed using 3-axes piezo force sensor. For newly designed dynamometer, calibration is conducted with sensitivity of force sensor modulated and proper preload and interference force are investigated experimently. Also, cutting force signals of newly designed dynamometer are compared with those of conventional one in high speed cutting experiment and its superiority is confirmed. Then using newly designed dynamometer, high speed machinability is evaluated about cutting force and tool wear in various cutting conditions.

  • PDF

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

3자유도 모터 제어를 위한 철심 솔레노이드 특성의 실험적 해석에 관한 연구 (A Study of the Iron-Core Solenoid Analysis for 3 D.O.F. Motor Control with Experimental Method)

  • 백윤수;박준혁
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1334-1340
    • /
    • 2001
  • In this paper, the experimental modeling of the force between permanent magnet and iron-core solenoid is suggested for more accurate control of 3 D.O.F. motor using the electromagnetic force. In the case of iron-core solenoid, the general equation of solenoid cant be used simply because of its nonlinearity. Therefore, the magnetic flux density is estimated through the concept of equivalent permanent magnet. The force distribution between permanent magnet and iron-core solenoid is more dependent on the magnetization of iron core caused by the permanent magnet than any other parameters. Therefore, the equation of the force estimation between these magnetic systems can be modeled by the experimental function of the magnetization of iron core. Especially, if the distance between iron-core solenoid and permanent magnet is far enough, the force equation through experiment can be expressed from only the current of coil and the distance between iron-core solenoid and permanent magnet. It means that Coulombs law can be used for magnetic systems and it is validated through the experiment. Therefore, force calibration is performed by the concept of Coulombs law.

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

Pitch Measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic Force Microscope

  • Jonghan Jin;Ichiko Misumi;Satoshi Gonda;Tomizo Kurosawa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.19-25
    • /
    • 2004
  • Pitch measurements of 150 nm one-dimensional grating standards were carried out using a contact mode atomic force microscopy with a high resolution three-axis laser interferometer. This measurement technique was named as the 'nano-metrological AFM'. In the nano-metrological AFM, three laser interferometers were aligned precisely to the end of an AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$ stabilized He-Ne laser at a wavelength of 633 nm. Therefore, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM could be used to directly measure the length standard. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). The primary source of uncertainty in the pitch-measurements was derived from the repeatability of the pitch-measurements, and its value was about 0.186 nm. The average pitch value was 146.65 nm and the combined standard uncertainty was less than 0.262 nm. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

MR 환경에서 사용을 위한 5자유도 광학식 힘센서 (5-D.O.F. Force/moment Sensor using Optical Intensity Modulation in MR-field)

  • 김민규;이동혁;조남규
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.520-528
    • /
    • 2013
  • A 20 mm diameter of small 5-D.O.F. force sensor has been developed for applications in MR-field Optical intensity modulation was adopted for transducing to miniaturize the sensor structure. For its accurate sensing of 5-D.O.F. force/moment, the elastic detecting module was designed to respond independently to each force or moment component. And for small size, two optical transducing modules of 2-D.O.F. and 3-D.O.F. were designed and integrated with the detecting module where optical fibers were arranged in parallel to make the sensor small. It is confirmed by calibration test that the detecting modules deforms linearly and independently to the input force. The results of evaluating test show that the range and resolution of forces are ${\pm}4$ N and 0.94~7.1 mN and the range and resolution of moments are ${\pm}120N{\cdot}mm$ and $0.023{\sim}0.034N{\cdot}mm$.

6분력 힘/모멘트 발생장치 개발 및 평가 (Development and Evaluation of 6-components Force/Moment Generator)

  • 정홍식;주진원
    • 대한기계학회논문집A
    • /
    • 제40권7호
    • /
    • pp.621-628
    • /
    • 2016
  • 본 논문에서는 다축 로드셀의 특성을 평가할 수 있는 실하중 6분력 힘 및 모멘트 발생장치를 개발하였다. 정확한 힘과 모멘트를 발생시키고 각 분력 간의 상호 작용 오차를 최소화하기 위해 몇 가지 새로운 방법을 도입하였다. 제작된 힘/모멘트 발생장치의 신뢰성을 검증하기 위하여 상용 토크셀과 본 논문에서 고안하여 제작한 양단 고정보 형태의 측정장치를 이용하여 모멘트 발생 방법을 평가하고 하중 간의 상호 측정을 수행하였다.

Live-Virtual 시뮬레이터 모의특성 보정에 관한 연구 : 중력가속도에 따른 조종사의 기동제한 특성 기반 (A Study on the Calibration of Simulation Characteristics of Live-Virtual Simulator System : To Impose Restrictions on a Maneuverability of a Simulated Aircraft Due to Pilot's G-force)

  • 박명환;유승훈;설현주;김천영;홍영석
    • 산업경영시스템학회지
    • /
    • 제37권4호
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, Korea Air Force has been facing a lot of problems in its pilot training system such as training time shortage due to the expensive gas price, noise pollution and difficulties in finding airspace for training. To tackle these problems, a new training system (called L-V training system) using both aircraft and its simulator has been suggested. In the system, a data link is established between aircraft and simulator to exchange their flight information. Using the flight information of simulator, aircraft can perform various air missions with or against imaginary aircraft (i.e., simulator). For this system, it is crucially important that fair fighting condition has to be guaranteed between aircraft and simulator. In this paper, we suggested an approach to impose a maneuvering restriction to simulator in order to provide fair fighting condition between aircraft and simulator.

자동차용 스프링클램프 조임력 자동측정시스템의 개발 (Development of the Effective Clamping Force Measuring System for Spring Clamp)

  • 오기석;조명우;서태일
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to develop an improved measuring system, which allows for effectively measure spring clamping forces. This system consists of eight or twelve measuring points in order to acquire the clamping force distribution of the whole range of spring clamp. Each measuring point consists of load cells equipped with 4 strain gauges. Using different bearings, we calibrate the roundness of the measuring points. For quality control and database construction, a software system is established. furthermore, uncertainty is calculated to validate the confidence of this system. Various experiments confirm the effectiveness of this measuring system.

  • PDF