• Title/Summary/Keyword: Force breaking

Search Result 244, Processing Time 0.021 seconds

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Research on Wave Kinematics & Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 대한 연구)

  • LEE BYEONG-SEONG;JO HYO-JAE;GOO JA-SAM;KANG BYUNG-YOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • When the wind blows hard, most waves are breaking in sea. Breaking waves occur, exceeding limitation of wave steepness(wave height/wave length=l/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at two dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies. We research how are the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force. We compare the force in a regular wave which has same specifications(wave height, period and length) as the breaking wave. Also the experimental results of wave exciting force and particle velocity are investigated by comparison on the analytic results using the potential theory.

  • PDF

A study on the impact wave forces for design of offshore structures (해양구조물 설계에 있어서 쇄파파력의 영향분석)

  • 조규남;윤재준
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-80
    • /
    • 1996
  • The importance of the impact force on the vertical offshore circular structure member in the surf zone due to the breaking wave has been recognized recently. In this paper characteristics of breaking wave forces and the corresponding estimation procedures for them are investigated. For the characterization of the wave forces, three parts, drag force, inertia force, impact force are categorized and identified, respectively. Among them the impact force is maimly studied and the concise form of the force is proposed with the application scheme for the design of offshore circular structure member. The resulting form porposed here for impact force is well coincided with former research results by other people. Except the impact force, so called Morison equation can be employed for the common offshore structure design. The drag force and inertia force are represented as convertionally for the profile except the breaking part. In the numerical example, for thpical sea condition and the member size, the proposed procedures for the breaking wave forces calculation are demonstrated. It is found that the impact force is the most deminant one comparing with inertia and drag forces in the surf zone.

  • PDF

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier

  • Ding, Shifeng;Wang, Gang;Luo, Qiuming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.667-679
    • /
    • 2020
  • As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed using Circumferential Crack Method (CCM) and Volume of Vluid (VOF) with two main key factors (velocity νx and force Fx). The ship motion analysis is carried out by CCM when the ship navigates in the ice-covered waters with a constant propulsion power. The velocity νx is gained, which is the initial excitation condition for the calculation of internal sloshing force Fx. Then, the ship motion is modified based on iterative computations under the union action of ice-breaking force and liquid sloshing load. The sloshing simulation under the LNG tank is studied with the modified ship motion. Moreover, an ice-breaking LNG ship with three-leaf type tank is used for case study. The internal LNG sloshing is simulated with three different liquid heights, including free surface shape and sloshing pressure distribution at a given moment, pressure curves at monitoring points on the bulkhead. This present method is effective to solve the sloshing simulation during ice-breaking process, which could be a good reference for the design of the polar ice-breaking LNG carrier.

Research on Wave Kinematics and Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 관한 연구)

  • Lee, Soo-Lyong;Kang, Byung-Yoon;Lee, Byeong-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.18-24
    • /
    • 2007
  • When the wind blows strong, most waves are breaking at sea. Breaking waves occur by exceeding the limitation of wave steepness (wave height/wave length = 1/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at a two-dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies based on dispersion relation. This study investigates the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force at the breaking point and breaking region. We compare the regular wave load in a regular wave, which has same specifications (wave height, period and length), with the breaking waveload. Also, the experimental results of wave exciting force and particle velocity are investigated, by comparison with the analytic results using the potential theory.

Longitudinal Force Analysis of CWR on High Speed Rail Bridges (고속철도 교량상의 장대레일 축력 해석)

  • 이지하;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.556-563
    • /
    • 1998
  • Railway bridges have a significant effect on the stress and displacement of continuous welded rail(CWR). Longitudinal compression force at high temperature, combined breaking or acceleration forces can introduce track buckling. On the other hand, longitudinal tensile forces, associated with low temperatures, in combination with breaking forces may break rail. Therefore, it is very important to work out thorough counter measures for those problems, specially in high speed rail which high safety is required. The exact evaluation of longitudinal force of rail has the key to the solution. The main aim of the present paper is to examine whether the longitudinal force of CWR's on Kyung-Bu-HSR satisfy the criteria to be fulfilled in the design of railway bridge. The analyses are carried out by using "CWRAP" program which was developed by our research group. The ballast resistance and breaking force effects on the longitudinal force of CWR are investigated.

  • PDF

Optimum Formulation of Starch and Non-muscle Protein for Alkali Surimi Gel from Jack Mackerel (전갱이의 알칼리 수리미 겔 제조를 위한 전분 및 비근육 단백질의 최적화)

  • 최종덕;최영준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1032-1038
    • /
    • 2003
  • The two-level full factorial and mixture design were used to screen ingredient type and to investigate the effects of ingredients on properties of surimi gel from jack mackerel using measurements of breaking forces, deformation values and color. The addition of starch decreased breaking force significantly (p<0.05), but did not affect deformation. The bovine plasma protein (BPP) among non-muscle proteins increased a breaking force and deformation value. However, the dried egg white increased slightly a breaking force, and decreased greatly a deformation value. The breaking force of gel was increased, but deformation value did not change significantly (p<0.05) with adding BPP. The whiteness of gel was slightly improved with the addition of corn starch and BPP. At 78% moisture, the optimum ratios of ingredients were 89.5∼90.0% for alkali surimi, 4.6∼6.0% for corn starch and 4.3∼5.4% for BPP to obtain above 110g for a breaking force, 4.2 mm for a deformation, and 22.5 for a whiteness.

Optimum Formulation of Starch and Non-muscle Protein for Alkali Surimi Gel from Frozen White Croaker (냉동 백조기의 알칼리 수리미 겔 제조를 위한 전분 및 비근육 단백질의 최적화)

  • 박주동;김진수;조영제;최종덕;최영준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1026-1031
    • /
    • 2003
  • The two-level full factorial and mixture design were used to screen ingredient type and to investigate effects of ingredients on properties of alkali surimi gel from frozen white croakers using measurements of a breaking force, deformation and color. The addition of starch decreased a breaking force and deformation of gel regardless of starch type. The breaking force was decreased, but a deformation was not significantly changed (p<0.05) with increasing starch level. The potato starch was more resonable than com and wheat starch for a breaking force and deformation. The bovine plasma protein (BPP) greatly improved a breaking force and deformation. The breaking force and deformation of gel were increased with concentration of BPP. The whiteness of gel was slightly improved with adding starch and non-muscle for all treatments. At 78% moisture, the optimum ratios of ingredients were 89.4∼90.0% for surimi, 5.9∼6.3% for potato starch and 5.0∼5.4% for BPP to obtain above 100g for a breaking force, 4.6 mm for a deformation, and 25.5 for a whiteness.