• Title/Summary/Keyword: Force balance

Search Result 596, Processing Time 0.024 seconds

On the Force Balance of a Main Oxidizer Shutoff Valve (산화제 개폐밸브의 힘평형에 관한 연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.14-17
    • /
    • 2008
  • A poppet type shutoff valve under the pneumatic control has been adapted for the MOV (Main Oxidizer shutoff Valve) for KSLV (Korea Space Launch Vehicle). The MOV controls the supply of liquid oxygen into the combustion chamber just by opening and shutting operations. The poppet part of the poppet valves is usually connected with the piston, but on the other hand that of the MOV is separated and just contacted with the piston in order to secure the flexibility of the valve design. For the prevention of the collision with valve body by an undesirable movement of the piston part, it is necessary to evaluate the force during the valve closing. The analysis of the force balance of the MOV at the moment of the valve closing have been performed and some important design parameters for the force balance control have been introduced.

  • PDF

A Study on the Force Balance of a Main Oxidizer shutoff Valve (산화제 개폐밸브의 힘평형에 관한 연구)

  • Jeon, Jae-Hyoung;Hong, Moon-Geun;Kim, Hyun-Jun;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.812-818
    • /
    • 2009
  • A MOV(Main Oxidizer shutoff Valve) controls the flow rate of liquid oxygen into the rocket combustor by opening and shutting operations piloted by a pneumatic force. In order to improve the effective design for sealing parts of poppet and piston assemblies, the poppet assembly has been designed to be just contacted with the piston assembly. However, to avoid a gap at the poppet/piston contact surface and to evaluate the MOV operating performance, an analyze on the force balance during the closing motion have been performed. For the accuracy of the analysis, the friction forces and the hydraulic forces have been respectively obtained by experiments and CFD analysis. Through the analysis, some important design parameters such as the spring constant, poppet friction and orifice size in the force balance have been introduced and the required operation performance of the MOV has been proved feasible.

An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object (공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현)

  • Yi Keon Young;Kim Jin-Oh
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

Droplet transient migration and dynamic force balance mechanism on vibration-controlled micro-texture surfaces

  • Xu, Jing;Liu, Guodong;Lian, Jiadi;Ni, Jing;Xiao, Jing
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1368-1374
    • /
    • 2018
  • In this paper, forced vibration was used to regulate the droplet migration, fully recording the transient migration of droplets on a micro-textured substrate under the resonance frequency by a high-speed camera. The influence of resonance frequency and dynamic migration characteristics of droplets on the solid micro-texture surface under lateral vibration were researched. The experiment demonstrates that the driving force is caused by the difference between the left and right contact angles made the droplet oscillate and migrate, and as time t increases, the left and right contact points are periodically shifted and the amplitude of migration increases. Therefore, based on the droplet migration behavior and its force balance mechanism, a spring vibration model of migration behavior of the vibrating droplet micro unit was set up to predict the complete trajectory of its migration on a solid surface. The calculation results show that the theoretical displacement is less than the experimental displacement, and the longer the time, the larger the difference. Affected by the vibration, part of the droplet permeates through the micro-texture, resulting in the droplet losing height and the contact angle becoming smaller as well. While the other part of droplet overcomes the internal surface tension to migrate.

Approximate solution for a building installed with a friction damper : revisited and new result (마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과)

  • Min, Kyung-Won;Seong, Ji-Young;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

A New Experimental Technique for Calibration of Frictional Force in Atomic Force Microscopy (원자 현미경에서 마찰력 측정을 위한 새로운 실험 기법)

  • Choi, Duk-Hyun;Hwang, Woon-Bong;Yoon, Eui-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1906-1913
    • /
    • 2004
  • A new method has been proposed for the calibration of frictional forces in atomic force microscopy. Angle conversion factor is defined using the relationship between torsional angle and frictional signal. Once the factor is obtained from a cantilever, it can be applied to other cantilevers without additional experiments. Moment balance equations on the flat surface and top edge of a commercial step grating are used to obtain angle conversion factor. Proposed method is verified through another step grating test and frictional behavior of Mica.

A New Experimental Technique for Calibration of Frictional Force in Atomic Force Microscopy (원자 현미경에서 마찰력 측정을 위한 새로운 실험 기법)

  • Choi, Duk-Hyun;Hwang, Woon-Bong;Yoon, Eui-Sung;Kim, Joon-Won;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.846-851
    • /
    • 2004
  • A new method has been proposed for the calibration of frictional forces in atomic force microscopy. Angle conversion factor is defined using the relationship between torsional angle and frictional signal. Once the factor is obtained from a cantilever, it can be applied to other cantilevers without additional experiments. Moment balance equations on the flat surface and top edge of a commercial step grating are used to obtain angle conversion factor. Proposed method is verified through another step grating test and frictional behavior of Mica.

  • PDF

Experimental test on bridge jointed twin-towered buildings to stochastic wind loads

  • Ni, Z.H.;He, C.K.;Xie, Z.N.;Shi, B.Q.;Chen, D.J.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2001
  • This paper presents results of a study on wind loads and wind induced dynamic response of bridge jointed twin-towered buildings. Utilizing the high-frequency force balance technique, the drag and moment coefficients measured in wind tunnel tests, and the maximum acceleration rms values on the top floor of towers, are analyzed to examine the influence of building's plan shapes and of intervals between towers. The alongwind, acrosswind and torsional modal force spectra are investigated for generic bridge jointed twin-towered building models which cover twin squares, twin rhombuses, twin triangles, twin triangles with sharp corners cut off, twin rectangles and individual rectangle with the same outline aspect ratio as the twin rectangles. The analysis of the statistical correlation among three components of the aerodynamic force corroborated that the correlation between acrosswind and torsional forces is significant for bridge jointed twin-towered buildings.

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF

Reduction of the Axial Force of Water Pump Using CFD (전산유체역학을 이용한 워터펌프 축력 저감)

  • Jo, Sok-Hyun;Shin, Dong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.83-87
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) method has been used to investigate the axial force of automotive water pump. As the excessive axial force can make some unexpected problems like impeller interference and coolant leakage we have focused on finding the cause of axial force and its reduction in this paper. First, we have tested the closed type water pump with and without balance hole by the calculation methods. By examining the pressure contour around the impeller, we have found that the axial force arises not only from the pressure difference around shroud but also from the pressure difference around hub. So we have tested two impellers - one is normal open type impeller and the other is open type impeller with modified hub. The results show that the axial force reduction is about 150~200N for normal one and 700N@3000RPM for modified impeller. And the hydraulic efficiency which is important in aspect of engine fuel efficiency is reduced about 6.5% for normal one but increased 4%@3000RPM for modified impeller.