• Title/Summary/Keyword: Force Transmission

Search Result 609, Processing Time 0.027 seconds

Effects of the Sarcodon aspratus on the Physicochemical and Sensory Properties of Cooked Beef (능이버섯 첨가가 우육의 물리화학적 및 관능적 특성에 미치는 영향)

  • 송영선;이승아;조정원;이종호;조재선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.266-272
    • /
    • 2001
  • An instrumental analysis of cooked beef was carried out along with sensory evaluation to find out the effect of Sarcodon aspratus on the physicochemical and sensory characteristics in comparision with kiwi fruit and pear. Transmission electron microscopy showed the muscle fiber started to be degraded when treated with Sarcodon aspratus(1,000unit) for 10 min at $25^{\circ}C$. No distinct sarcomere, A-band, and Z-line was observed when treated with Sarcodon aspratus for 60 min at same condition. The moisture content of cooked beef was increased in proportion to the increment of Sarcodon aspratus, kiwi fruit and pear. In the texture, shear force of cooked beef was decreased with the increment of Sarcodon aspratus, kiwi fruit and pear. In terms of color, L-value was decreased by addition of Sarcodon aspratus, whereas L-value was increased by addition of kiwi fruit and pear in dose-dependent manners. a-value and b-value was decreased with the increment of Sarcodon aspratus, kiwi fruit and pear. There were significant differences (p<0.05) in the sensory characteristics of the samples in which control was most preferred in taste and flavor. As the content of Sarcodon aspratus, kiwi fruit and pear was increased, the score of juiciness and tenderness was increased. In the overall acceptance, score of 0.05~0.1% Sarcodon aspratus and 10% pear was not different from that of control. Therefore, it can be concluded that 0.05~0.1% addition of Sarcodon aspratus might be desirable for the improvement of texture and juiciness of cooked beef.

  • PDF

Effect of Energy Loss by a Vertical Slotted Wall (직립 슬릿벽에 의한 에너지 손실효과)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.295-303
    • /
    • 2015
  • The eigenfunction expansion method is appled for the wave scattering by a vertical slotted, where both the inertial and quadratic drag terms are involved. Quadratic drag term representing the energy loss is linearized by the application of socalled equivalent linearization. The drag coefficient, which was empirically determined by Yoon et al.(2006) and Huang(2007) is used. Analytical results are verified by comparison to the experimental results conducted by Kwon et al.(2014) and Zhu and Chwang(2001). Using the developed design tool, the effect of energy loss by a vertical slotted wall is estimated with various design parameters, such as porosity, submergence depth, shape of slits and wave characteristics. It is found that the maximum value of energy loss across the slotted wall is generated at porosity value less than P = 0.1. The present solutions can provide a good predictive tools to estimate the wave absorbing efficiency by a slotted-wall breakwater.

Comparison of Test Standards for the Performance and Safety of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Shin, Sung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.158-165
    • /
    • 2014
  • Purpose: The objective of this paper was to compare test standards regarding the performance and safety of agricultural tractors to identify the differences in test conditions, measurement tolerances, and test procedures. Based on the comparison, some recommendations were proposed for possible revisions or improvements to current tractor test standards. Methods: The test standards and codes of major standards development organizations (SDOs), such as the Organization for Economic Cooperation and Development (OECD), the International Organization for Standardization (ISO), the American Society of Agricultural and Biological Engineers (ASABE), EC type approval, and the board of actions of the Nebraska Tractor Test Laboratories (NTTL), were selected and analyzed. Comparison of the test standards: The ISO provides references for fuel and lubricants for tractor tests, and the OECD provides additional measurements for calculating fuel consumption characteristics during the power take-off (PTO) tests. The ISO, EC type approval, and the ASABE provide PTO protective device and the safety requirements. During drawbar power tests, seven transmission ratios are selected for fully automatic transmissions, according to the OECD. In case of hydraulic lift tests, ISO 789-2 and OECD Code 2 advise the use of a static lift force, while SAE J283 advises the use of additional dynamic lift capacity tests for a better representation of in-field operations. The OECD, the ISO, and EC type approval determine the seat index point (SIP), whereas the ASABE determines the seat reference point (SRP) for roll-over protective structure (ROPS) tests. Diversified measurement tolerances were among the braking performance test standards. The European Union (EU) has developed daily limits for vibration exposures with adaptations from ISO 2631-1. Electromagnetic compatibility evaluations are emerging of high-efficiency tractors due to the long-term conformance to electromagnetic emissions and interferences. Comparisons of tractor test standards discussed in this paper are expected to provide useful information for tractor manufacturers and standards development personnel to improve the performance and safety test standards of tractors.

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Anxiolytic-like Effects of Methanol Extract of Zizyphi Spinosi Semen in Mice

  • Han, Hui-Shan;Ma, Yu-An;Eun, Jae-Soon;Hong, Jin-Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.175-181
    • /
    • 2007
  • Zizyphi Spinosi Semen (ZSS), a traditional Chinese folk medicine, has been used for treatment of insomnia and anxiety. This experiment was performed to investigate the anxiolytic-like effect of methanol extract of ZSS (MEZSS) in mice by using the experimental paradigms of anxiety and compared with that of a known anxiolytic, diazepam. In the elevated plus-maze test, it showed that MEZSS (100 mg/kg, p.o.) and diazepam (2.0 mg/kg, p.o.) increased the percentage of time spent on the open arms and the number of open arms entries. MEZSS (50, 100 and 200 mg/kg, p.o.) and diazepam (0.5 mg/kg, p.o.) significantly increased the number of head dips compared with that of control group in the hole-board test. However, MEZSS has no effect on decreasing the locomotor activity, while diazepam (2.0 mg/kg, p.o.) significantly inhibited locomotor activity. MEZSS did not decrease the strength force in the grip strength test, either. In addition, GABAergic involvements were also investigated to understand the possible mechanisms. $GABA_{A}$ receptors subunits and glutamic acid decarboxylase (GAD) were not over expressed, compared with that of the saline group. We also found that MEZSS did not increase chloride influx in cultured cerebellar granule cells. It is concluded that MEZSS might have anxiolytic-like effects, but these effects might not be mediated by GABAergic transmission.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge (일체식 및 반일체식 복합슬래브 교량의 구조거동 분석에 관한 연구)

  • Choi, Young-Guk;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Girder bridges and slab bridges are equipped with a system consisting of a flexible joint unit, support, inverted T shaped abutment, and a separate connecting slab structure. These systems have problems such as an increase in cost due to frequent breakage of the expansion joints and a decrease in durability due to a structure with low moment redistribution. To improve these problems, propose Inegral and Semi-Integral Hybrid Slab Bridge and examine the safety through structural analysis. As a result of the review, Inegral and Semi-Integral Hybrid Slab Bridge was the section stiffness is small. but it is confirmed that the structural safety, ductility and flexibility are higher than existing bridges because the moment redistribution and the force transmission are surely performed.

In Vitro Formation of Protein Nanoparticle Using Recombinant Human Ferritin H and L Chains Produced from E. coli

  • RO HYEON SU;PARK HYUN KYU;KIM MIN GON;CHUNG BONG HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.254-258
    • /
    • 2005
  • We have conducted in vitro reconstitution study of ferritin from its subunits FerH and FerL. For the reconstitution, FerH was produced from an expression vector construct in Escherichia coli and was purified from a heat treated cell extract by using one-step column chromatography. FerL was expressed as inclusion bodies. The denatured form of FerL was obtained by a simple washing step of the inclusion bodies with 3 M urea. The reconstitution experiment was conducted with various molar ratios of urea-denatured FerH and FerL to make the ferritin nanoparticle with a controlled composition of FerH and FerL. SDS-PAGE analysis of the reconstituted ferritins revealed that the reconstitution required the presence of more than 40 molar$\%$ of FerH in the reconstitution mixture. The assembly of the subunits into the ferritin nanoparticle was confmned by the presence of spherical particles with diameter of 10 nm by the atomic force microscopic image. Further analysis of the particles by using a transmission electron microscope revealed that the reconstituted particles exhibited different percentages of population with dense iron core. The reconstituted ferritin nanoparticles made with molar ratios of [FerH]/[FerL]=l00/0 and 60/40 showed that 80 to $90\%$ of the particles were apoferritin, devoid of iron core. On the contrary, all the particles formed with [FerH]/[FerL]=85/ 15 were found to contain the iron core. This suggests that although FerH can uptake iron, a minor portion of FerL, not exceeding $40\%$ at most, is required to deposit iron inside the particle.

A Study on the Enhance of Air tightness Performance of a New Type Silding Window with horizontally Rolling Wheels (수평 구름 바퀴가 적용된 신 유형 미서기 창문의 기밀성능 개선에 관한 연구)

  • Jang, Hyok-Soo;Kim, Young-Il;Chuung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • Crevices between window and window frame cause not only heat losses but also serve path to sound transmission and infiltration of fine dusts that are harmful to humans. There were many efforts in the past to eliminate these crevices but because of the windows' indispensable function of opening and closing, it was an unsolvable problem. In this study, a new type sliding window is developed by applying horizontally rolling wheels to implement a surface sealing which is excellent for enhancing air tightness. To evaluate the feasibility of the newly developed window, forces for opening and closing, durability and air tightness were testet according to Korean Testing Standards. Force for opening a 2000 N window is 30 N. It endured 100,000 cycles of opening and closing. Infiltration was $0.00m^3/(m^2h)$ for a pressure difference of 10 Pa. Since this window has few moving parts, it has favorable features of low cost and few breakdown.