• Title/Summary/Keyword: Force Tracking control

Search Result 172, Processing Time 0.028 seconds

Force Synchronizing Control for AC Servomotor-Ball Screw Driven Injection Unit (AC서보모터-볼스크루 구동 사출장치의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 2015
  • This paper focuses on the issue of force synchronizing control for the injection servomechanism of injection molding machines. Prior to the controller design, a virtual design model was developed for the injection mechanism with an AC servomotor-ball screw. A synchronizing controller is designed and combined with the PID control to accommodate the mismatches between the real plant and the linear model plant used. Due to the plant uncertainty, the stiffness and the damping of the mechanism were considered. From the tracking control simulations based on the virtual design model, it is shown that a significant reduction in force synchronizing error is achieved through the use of a proposed control scheme.

Auto fitting of motor gains for high speed tapping (고속 텝 가공(tapping)을 위한 자동 이득(gain) 조정기)

  • 최진욱;유완식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.660-663
    • /
    • 1996
  • There has been many activity to increase accuracy in machining center by reducing tracking error. The tracking error can cause bad effect in high speed rigid tapping in which syncronization servo motor with spindle is relatively important. To reduce tracking error, feed forward control has been used, but no method is provided knowing motor dynamics, force variation, etc. In this paper, we observe that, despite of tracking error of relevant axis, high speed tapping could be possible by reducing contour error of axis to be syncronized. We present the method to increase accuracy in high speed tapping to minimize contour error by automatically fitting gains of servo and spindle.

  • PDF

Collision Avoidance of a Mobile Robot Using Intelligent Force Control Algorithm Based on Robot Dynamics (동역학 기반의 지능 힘제어 방식을 이용한 이동 로봇의 장애물 회피에 대한 연구)

  • Jang Eun Soo;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.799-808
    • /
    • 2004
  • In this paper, a new collision avoidance algorithm based on the dynamic model of a mobile robot is proposed. In order to avoid obstacles on the path of a mobile robot, intelligent force control is used to regulate accurate distance between a robot and an obstacle. Since uncertainties from robot and environment dynamics degrade the performance of a collision avoidance task, neural network is used to compensate for uncertainties so that the collision avoidance can be performed intelligently. Simulation studies are conducted to confirm the proposed collision avoidance tracking control algorithm.

Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator (압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어)

  • Jeon, Juncheol;Han, Young-Min;Nguyen, Quoc Hung;Han, Seung-Hun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.331-336
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 l/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative (PD) controller is designed based on the $3^{rd}$-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

  • PDF

Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator (압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어)

  • Jeon, Jun-Cheol;Han, Young-Min;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1020-1026
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 litter/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative(PD) controller is designed based on the 3rd-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

Allocations and Robust ℋ Fuzzy Control for Waypoints Tracking of Large Displacement Unmanned Underwater Vehicles (대형급 무인잠수정의 임무의 중요성에 따른 목표 경로점 선정 및 제어를 위한 T-S 퍼지모델 기반 강인 ℋ 제어기 설계)

  • Kang, Hyoung Bin;Lee, Ho Jae;Kim, Sung Hoon;Park, Ho Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.402-408
    • /
    • 2017
  • This paper deals with a robust ${\mathfrak{H}}_{\infty}$ controller design problem for waypoints tracking of large displacement unmanned underwater vehicles (LDUUVs) in Takagi-Sugeno fuzzy form. The LDUUV model uses a rudder to control its horizontal motion. We determine the order of waypoints based on their priorities and consider only surge force. A fuzzy controller in state-feedback form is taken and its design condition of is represented in terms of linear matrix inequalities. A numerical simulation is included to show the effectiveness of the theoretical development.

A Study on the Burr Minimization of Drilling Process by Optimal Velocity Profile Tracking (이상적 속도 궤적을 이용한 드릴링 공정의 버 최소화에 관한 연구)

  • Park, Min-Suk;Jeon, Do-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.116-121
    • /
    • 1999
  • At the exit stage of drilling, the burr generates and deburring process is required to remove it. Since the additional process reduces productivity, a burr minimization technique is necessary in the servo system of drilling machines. In this research, cutting force is modelled with tool geometry and the optimal velocity profile with which the desired cutting force maintains is generated to minimize burr. Experiments show that the proposed velocity profile tracking effectively minimizes burr compared to the constant velocity feed.

  • PDF

Robust Force Control of a 6-Link Electro-Hydraulic Manipulator (전기 유압 매니플레이터의 강건 힘 제어)

  • Ahn, Kyoung-Kwan;Cho, Yong-Rae;Yang, Soon-Yong;Lee, Byung-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this report, we applied a compliance control which is based on the position control by a disturbance observer for our manipulator system. And a reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and position of environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

Adaptive Control of Permanent Magnet Linear Synchronous Motor using Wavelet Transform

  • Lee, June;Lee, Jin-Woo;;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.63-67
    • /
    • 2004
  • The problem is improving the positioning precision of a permanent magnet linear synchronous motor (PMLSM). Thus, this paper presents the design and realization of an adaptive dither to reduce the force ripple in PMLSM. A composite control structure is used, consisting of three components: a simple feed-forward component, a PID feedback component and an adaptive feed-forward compensator (AFC). Especially adaptive feed-forward component cancel out detent force using wavelet transformation. Computer simulation results verify the effectiveness of the proposed scheme for high precision motion trajectory tracking using the PMLSM

  • PDF