• Title/Summary/Keyword: Force Standard

Search Result 870, Processing Time 0.025 seconds

100 kN Deadweight Force Standard Machine and Evaluation

  • Park Yon-Kyu;Kim Min-Seok;Kim Jong-Ho;Kang Dae-Im;Song Hou-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.961-971
    • /
    • 2006
  • A deadweight force standard machine is a mechanical structure that generates force by subjecting deadweights to the local gravitational field. The Korea Research Institute of Standards and Science (KRISS) developed and installed a 100 kN deadweight force standard machine for national force standards. It can generate forces from 2 kN to 110 kN in increments of 1 kN. The uncertainty of the force machine was estimated and declared as $2\times10^{-5}$. This 100 kN deadweight force machine was compared with the 500 kN deadweight force standard machine at KRISS and the 20 kN and 50 kN deadweight force standard machines at the National Metrology Institute of Japan (NMIJ). The measurement results showed good agreement between the deadweight force machines, and the accuracy level of the 100 kN deadweight force machine was verified.

Development of a Large Force Standard Machine with Built-in Force Transducers (내장형 힘 변환기를 이용한 대용량 힘 표준기 개발)

  • Gang, Dae-Im;Lee, Jeong-Tae;Song, Hu-Geun;Kim, Eom-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.667-675
    • /
    • 2000
  • Force measuring devices should be calibrated to guarantee their test results. In order to establish the force standards in Korea, deadweight machines of 5 kN, 20 kN, 100 kN and 500 kN capacity and a hydraulic force standard machine of 2 MN capacity were installed at the Korea Research Institute of Standards and Science(KRISS). As heavy industries in Korea have been developed, we should measure large forces over 2 MN capacity precisely in industries. We developed a 10 MN force standard machine with built-in force transducers which is more compact and cheaper than hydraulic force standard machines which have been widely used as large force standards in most national metrology laboratories. Test results reveal that the relative expanded uncertainty of the force machine is less than 4.1 $\times$ 10-4 in the range of 1 MN-4.5 MN.

Large Force Measuring System Using Build-up Technique; (Build-up 기법을 이용한 대용량 힘 측정 시스템 개발)

  • Kang, Dae-Im;Song, Hou-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.477-484
    • /
    • 1997
  • This paper describes the build-up force measuring system of 9.9 MN capacity which consists of nine force transducers of each having 1.1 MN capacity. We have specially designed a force transducer for a build-up force measuring system to reduce the uncertainty of a build-up system and to accomodate the new test procedure for a build-up system. It reveals that the relative uncertainty of the force measuring system is less than 1.5*10$^{-4}$ in the ran9e of 1-4.5 MN irrespective of loading direction. The force measuring system may be used to calibrate a 10 MN force standard machine to be used as a large force standard in Korea.

Development of a Deadweight Force Standard Machine with Weight Change Mechanism (추교환식 실하중 힘표준기의 개발)

  • Kim, Gab-Soon;Song, Hou-Keun;Kang, Dae-Im;Lee, Jeong-Tae;Park, Yon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.203-212
    • /
    • 1999
  • This paper describes a deadweight force standard machine with the weight change mechanism which can be used as a primary force standards at a national metrology institute. Since commercial deadweight force machine can generate forces by hanging weights to the weight supporter serially, force steps from deadweight force measuring devices of each having different capacity. In order to increase the force steps, we have specially designed a weight mechanism in which the machine can select the necessary weights and generate the load by hanging the selected weights to the weight supporter. The machine can generate 속 force of the range of 2 kN to 110 kN with force step of 1 kN. All weights have been accurately compensated and calibrated by a mass comparator and its standard uncertainty is less than 2.2 ${\times}\;10^{-6}$. The relative expanded uncertainty of the machine is 1.3 ${\times}\;10^{-5}$.

  • PDF

Design and fabrication of 2MN hydraulic force standard machine (2MN 유압식 힘 표준기의 설계 및 제작)

  • Kang, D.I.;Song, H.K.;Lee, J.T.;Ahn, B.D.;Kim, C.Y.;Lee, J.Y.;Ahn, B.C.;Cheong, K.K.;Jeon, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.33-41
    • /
    • 1994
  • For the establishment of large force standard and the accurate measurement of large force, 2MN hydraulic force standard machine which consists of loading frame, deadweight machine, two ram/cylinder systems and hydraulic control system was designed and fabricated. Measurement results of shapes for tow ram/cylinders reveal that the ratio of effective area is 200.094. The relative deviation of force stability for the machine is about .+-. 0.01% at 2MN and is less than .+-. 0.005% below 2MN. This machine may be widely used to calibrate the force measuring devices in industry and to test the force sensors.

  • PDF

A Study on Improvement of Fire Service Deployment Standard in Korea (한국 소방력배치 기준의 개선에 관한 연구)

  • Lee, Hae-Pyeong;Back, Min-Ho
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.28-42
    • /
    • 2006
  • The purpose of this study is to offer the improvement for deployment of fire service force in Korea by settlement patterns on the basis of analysis for the present standard and deployment of fire service force. For the adequate deployment and operation of fire service force by settlement patterns, we carried out the analysis of the present standard calculated with allocation of the authorized strength. We also classified clusters for settlement pattern through the statistical methods. We proposed the standard for deployment of fire service force reflected with environmental and need factors through the introduction of standardized index.

Procedure for Uncertainty Evaluation of a Precision Electric Force Measuring Device and Its Application (고정밀 전기식 힘측정기의 불확도평가 절차 및 응용)

  • Kim, Gab-Soon;Kang, Dae-Im
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.161-167
    • /
    • 1999
  • This paper describes the calibration method and the calculation equations of expanded uncertainty for a precision electric force measuring device. The calibration of the electric force measuring device is performed three times (0 ${\circ}$(first time), $120{\circ}$(second time), $240{\circ}$(third time)) at each calibration point. It is usually selected ten points from zero load to rated load of the electric force measuring device. The expanded uncertainty is calculated by combining A type standard uncertainty and B type standard uncertainty. The calibration method and the calculation equations of expanded uncertainty can be widely used in the calibration of the precision electric force measuring device.

  • PDF

Effect of Walking Speed on Angles of Lower Extremity and Ground Reaction Force in the Obese (보행속도가 비만인의 하지관절각과 지면반발력에 미치는 영향)

  • Kim, Tae-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2006
  • The purpose of this study is to elucidate how walking speed influences on change of angles of lower extremity and ground reaction force in normal and obese people. One group with normal body weight who were experimented at a standard speed of 1.5m/s and the other obese group were experimented at two different walking speeds (standard speed of 1.5m/s and self-selected speed of 1.3m/s). We calculated angles of lower extremity and ground reaction force during stance phase through video recording and platform force measuring. When the obese group walked at the standard speed, dorsi-flexion angle of ankle got bigger and plantar-flexion angle of ankle got smaller, which were not statistically significant. There was no significant difference of knee joint angles between normal and obese group at the same speed walking but significant post hoc only for the first flexion of knee joint in obese group. $F_z1$ was bigger than $F_z3$ in vertical axis for ground reaction force in both groups at the standard speed walking and the same force value at self-selected speed in obese group. $F_y3$ was always bigger than $F_y1$ in anterior-posterior axis in both groups.

Quantitative Evaluation of Rehabilitation Therapy Based on a Two-Finger Force Measurement System

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.357-361
    • /
    • 2014
  • This paper describes the evaluation of the effectiveness of rehabilitation therapy for patients with finger paralysis based on a two-finger force measurement system (TFFMS). The paralyzed fingers can be recovered through rehabilitation therapies. The finger pressing force of the patients can be measured utilizing the TFFMS previously developed by the author [7]. The TFFMS, however, has not been fully adopted as a standard method for evaluating the therapy owing to the lack of a standard protocol. The pressing force of healthy volunteers and patients is analyzed with the TFFMS to explore the feasibility of the TFFMS as an evaluation device. The test confirms that the established standard protocol is useful to quantitatively assess the progress of finger rehabilitation therapy.

Analysis of Change of Contact Force in the Pantograph Pan Head of Next Generation High Speed Train (차세대 고속전철 팬터그래프 팬 헤드의 압상력 변화 해석)

  • Kang, Hyungmin;Kwon, Hyeok-bin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In order to investigate the change of contact force of pantograph pan head due to the change of aerodynamic force, three dimensional flow around the pan head were calculated. For this, the aerodynamic modeling of pan head of CX pantograph was performed and the standard deviation of the contact force of the simulation results were compared with those of the experimental results of wind tunnel tests. From the comparison, it was confirmed that the current grid system and the numerical methodologies can be utilized to calculate the aerodynamic characteristics of the pantograph pan head. By using these grid system and the methodologies, the standard deviations of the contact force of pan head were calculated with velocities as 200, 250, 300, 350, and 400 km/h. The maximum standard deviation of the aerodynamic contact force of pan head was 92 N at 400 km/h and statistical minimum contact force was more than 0 N. Therefore, it was confirmed that and the pan head of CX pantograph was statistically contacted with the catenary system with the train speed of 350 km/h though the aerodynamic contact force was changed.