• 제목/요약/키워드: Force Prediction

Search Result 907, Processing Time 0.026 seconds

Numerical Study of an External Store Released from a Fighter aircraft

  • Han, Cheol-Heui;Yoon, Young-Hyun;Cho, Hwan-Kee;Lee, Sang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.374-377
    • /
    • 2008
  • The prediction of the separation trajectories of the external stores released from a military aircraft is an important task in the aircraft design area having the objective to define the operational and release envelopes. This paper presents the results obtained for store separation by employing commercial sorftwares, FLUENT and CFD-FASTRAN. FLUENT treats the rigid body motion by employing the remeshing scheme. CFD-FASTRAN uses the chimera(overset) grid and interpolations. It was found that, for the prediction of the trajectories and behavior of the stores separated from the wing, both codes shows the good agreement with the experimental results.

  • PDF

Numerical Study of an External Store Released from a Fighter aircraft

  • Han, Cheol-Heui;Yoon, Young-Hyun;Cho, Hwan-Kee;Lee, Sang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.374-377
    • /
    • 2008
  • The prediction of the separation trajectories of the external stores released from a military aircraft is an important task in the aircraft design area having the objective to define the operational and release envelopes. This paper presents the results obtained for store separation by employing commercial sorftwares, FLUENT and CFD-FASTRAN. FLUENT treats the rigid body motion by employing the remeshing scheme. CFD-FASTRAN uses the chimera(overset) grid and interpolations. It was found that, for the prediction of the trajectories and behavior of the stores separated from the wing, both codes shows the good agreement with the experimental results.

  • PDF

연속냉간압연에서의 압하력 예측을 위한 모델 개발에 관한 연구 (A Study on Development of Model for Prediction of Rolling Force in Tandem Cold Rolling Mill)

  • 손준식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.491-496
    • /
    • 2000
  • In the tandem cold rolling mill, the quality is very important and requirements for thickness accuracy become more strict. Howerver, the mathematical model for prediction of rolling force was not considered an elastic deformation at the entry and delivery side of the contacted area between the worked roll and rolling strip so that where was so difficult to control of the thickness. To overcome this problem, the mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even f the effect of elastic compression was not important.

  • PDF

텐션 레벨링 공정 최적화를 위한 수식 모델 - Part I : 곡률 및 압하력 예측 (A new Model to Optimize the Process Conditions in Tension Leveling - Part I : Prediction of the Strip Curvature and the Roll Force)

  • 조용석;황상무
    • 소성∙가공
    • /
    • 제22권7호
    • /
    • pp.371-376
    • /
    • 2013
  • The shape defects such as edge waves and center buckles may be formed in the rolled strip because rolling can easily produce non-homogenous elongation across the strip width. The main purpose of tension leveling is to remove such defects by eliminating the differences in elongation. In this paper, a new approach for the optimization of the process conditions in tension leveling is presented. The approach consists of an analytic model for the prediction of the strip curvature and the force at each roll. The accuracy of the proposed model is examined through comparison with the predictions from a finite element model.

근전도에 기반한 근력 추정 (EMG-based Prediction of Muscle Forces)

  • 추준욱;홍정화;김신기;문무성;이진희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1062-1065
    • /
    • 2002
  • We have evaluated the ability of a time-delayed artificial neural network (TDANN) to predict muscle forces using only eletromyographic(EMG) signals. To achieve this goal, tendon forces and EMG signals were measured simultaneously in the gastrocnemius muscle of a dog while walking on a motor-driven treadmill. Direct measurements of tendon forces were performed using an implantable force transducer and EMG signals were recorded using surface electrodes. Under dynamic conditions, the relationship between muscle force and EMG signal is nonlinear and time-dependent. Thus, we adopted EMG amplitude estimation with adaptive smoothing window length. This approach improved the prediction ability of muscle force in the TDANN training. The experimental results indicated that dynamic tendon forces from EMG signals could be predicted using the TDANN, in vivo.

  • PDF

기능적 표면 전기자극에 의해 유발되는 등척성 근력강화현상의 기초적 특성 (Fundamental Characteristics of Isometric Muscle Force Potentiation induced by Surface Stimulation in FES)

  • 엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권2호
    • /
    • pp.151-156
    • /
    • 2001
  • 기능적 전기자극(FES)에 의한 사지운동의 효과적인 제어를 위해서는, 전기자극을 입력으로 하여 근력 및 운동을 정확히 출력하는 근골격모델이 요망된다. 이 연구에서는 FES에 의한 근력 및 운동을 보다 정확히 예측할 수 있는 모델을 작성하기 위하여, 기존의 근육모델에서는 포함되지 않았던 근력의 점진적 강화현상에 대한 기초적 성질을 조사하는 것을 목적으로 한다. 구체적으로는, 일정강도의 표면자극에 대한 근력의 강화현상이 주파수, 자극이력, 근육길이에 어떻게 의존하는지를 조사하였다. 실험결과로부터, 자극의 주파수가 높을수록 초기근력에 대한 자극중의 근력의 증가도는 작아지고 근력의 피크에 도달하는 시간이 짧아지는 것을 알 수 있었다. 선행 자극에 의해 근육의 내부적인 강화상태가 포화되면 근력은 추가적인 자극에 대해서도 더 이상 증가하지 않았다. 자극시의 근육의 길이는 근력강화에 큰 영향을 미쳤으며, 근육의 길이가 짧을수록 증가도가 컸다. 장래에는 이러한 결과를 토대로 한 새로운 근력강화의 모델이 요망된다.

  • PDF

STS 304 엔드밀 가공시 공구마멸을 고려한 절삭력 예측 (Cutting Force Prediction in End Milling of STS 304 Considering Tool Wear)

  • 김태영;정은철;신형곤;오성훈
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.46-53
    • /
    • 1999
  • Cutting force characteristics is closely related with tool wear on the end milling. And it is found that the tool wear can be properly obtained by observation through the tool-maker's microscope when STS 304 is cut using an end mill. The relationship between the tool wear and the cutting force is established based on data obtained from a series of experiments. A cutting force model can be derived from basic cutting force model using parasitic force components of this tool wear. The results of th simulation using the cutting force model proposed in this paper were verified experimentally and a good agreement was partly obtained. The proposed model is capable of predicting increased cutting force due to tool wear.

  • PDF

엔드 밀링 공정에서 순간 절삭력 계수 결정을 통한 절삭력 예측 및 크기효과 평가 (Prediction of Cutting Forces and Estimation of Size Effects in End Milling Operations by Determining Instantaneous Cutting Force Constants)

  • 김홍석
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.1003-1009
    • /
    • 2013
  • This paper presents a simple procedure to obtain the instantaneous cutting force constants needed to predict milling forces. Cutting force data measured in a series of slot milling tests were used to determine the cutting force constants at different feed rates. The values of the cutting force constants were determined directly at the tool rotation angle that maximized the uncut chip thickness. Then, the instantaneous cutting force constant was obtained as a function of the instantaneous uncut chip thickness. This approach can greatly enhance the accuracy of the mechanistic cutting force model for end milling. In addition, the influences of several cutting parameters on the cutting forces, such as the tool helix angle and axial depth of cut, were discussed.

밀링가공에서의 주축 변위 측정을 통한 절삭력 예측 (CUTTING FORCE PREDICTION USING SPINDLE DISPLACEMENT IN MILLING)

  • 장훈근;장동영;한동철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.485-489
    • /
    • 2004
  • Cutting force is important to understand cutting process in milling. To measure cutting force, tool dynamometer is widely used but it is hard to apply in workshop condition. Cutting force measurement which doesn't affect cutting process is needed. Using relations between cutting force and spindle displacement, cutting force can be predicted. Cylindrical capacitive sensor was used to measure spindle displacement during cutting. And signals from tool dynamometer collected to compare with spindle displacement. The result shows spindle displacement has a linear relation with cutting force. Using this result, a simple method to predict cutting force could be applied at workshop condition.

  • PDF

금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구 (A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining)

  • 김지우;이동원;김종선;김종수
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.