Fundamental Characteristics of Isometric Muscle Force Potentiation induced by Surface Stimulation in FES

기능적 표면 전기자극에 의해 유발되는 등척성 근력강화현상의 기초적 특성

  • 엄광문 (건국대학교 의과대학 의용생체공학부)
  • Published : 2001.04.01

Abstract

A computer model of the musculoskelotal system that provides accurate prediction of muscle force and body movement trom the stimulation input is desired for the effective control system design in FES. This paper aims to investigate the fundamental properties of the gradual muscle force potentiation that was not included in the previous muscle models, for future development of a model that provides vetter prediction of FES-induced muscle force and body movement. Specifically, hou the muscle length was investigated. The experimental results showed that both the force increment ratio and the time-to-peak during electrical stimulation decreased with stimulatino frequency. When the muscle potentiation state was saturated by preceding stimulation. the force did not increase any more during additive stimulation. Muscle length significantly affected the force potentiation in such a way that the force increment ratio decreased with muscle length. A new model of the muscle potentiation based on these results is desired in the future.

기능적 전기자극(FES)에 의한 사지운동의 효과적인 제어를 위해서는, 전기자극을 입력으로 하여 근력 및 운동을 정확히 출력하는 근골격모델이 요망된다. 이 연구에서는 FES에 의한 근력 및 운동을 보다 정확히 예측할 수 있는 모델을 작성하기 위하여, 기존의 근육모델에서는 포함되지 않았던 근력의 점진적 강화현상에 대한 기초적 성질을 조사하는 것을 목적으로 한다. 구체적으로는, 일정강도의 표면자극에 대한 근력의 강화현상이 주파수, 자극이력, 근육길이에 어떻게 의존하는지를 조사하였다. 실험결과로부터, 자극의 주파수가 높을수록 초기근력에 대한 자극중의 근력의 증가도는 작아지고 근력의 피크에 도달하는 시간이 짧아지는 것을 알 수 있었다. 선행 자극에 의해 근육의 내부적인 강화상태가 포화되면 근력은 추가적인 자극에 대해서도 더 이상 증가하지 않았다. 자극시의 근육의 길이는 근력강화에 큰 영향을 미쳤으며, 근육의 길이가 짧을수록 증가도가 컸다. 장래에는 이러한 결과를 토대로 한 새로운 근력강화의 모델이 요망된다.

Keywords

References

  1. Arch. Phys. Med. Rehabil v.42 Functional electrotherapy: stimulatoin of the peroneal nerve synchronized with the swing phase of the gait in hemiplegic patients W.T. Liberson;H.J. Holmquest;D. Scott;A. Dow
  2. IEEE Trans. Rehab. Eng. v.7 An approach to a muscle model with a stimulus grequency-force relationship for FES applications T. Watanabe;R. Futami;N. Hoshimiya:Y. Handa
  3. Bioelectrochemisty and Bioenergetics v.43 A physiologically based model of muscle activation verified by electrical stimulation R. Riener;J. Quintern
  4. IEEE Trans. Biomd. Eng. v.36 Paraplegic standing controlled by functional neuromuscular stimulation: part I computer model and control-system design G. Khang;F.E. Zajac
  5. Proc. 4th APCMBC A Macroscopic Model for Use in Large-Scale Musuloskeletal System G. Eom;T. Watanabe;R. Futami;N. Hoshimiya;Y. Handa
  6. J. Biomech. Eng. v.118 A model of fatgue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES Y. Giat;J. Mizrahi;M. Levy
  7. IEEE Trans. Biomd. Eng. v.40 A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES Y. Giat;J. Mizrahi;M. Levy
  8. Archivio di fisiologia v.64 Staircase effect and posttetanic potentiation in frog nerve-single muscle fibre preparations F. Colomo;P. Rocchi
  9. Nature v.217 Kinetices of myofilament activation in potentiated contraction:staircase phenonmenon in human skeletal muscle J.E. Desmedt;K. Hainaut
  10. J. Physiol v.93 The after effects of a tetanus on mammalian muscle G.L. Brown;U.S. von Euler
  11. J. Physiol v.237 Post-Tetanic effects in motor units of fast and slow twitch muscle of the cat J. Bagust;D.M. Lewis'J.C. Luck
  12. Frontiers Med. Biol. Engng. v.10 Computer-aided generation of stimulation data and model identification for functional electrical stimulation(FES) control of lower extremities G.M. Eom;T. Watanabe;R. Futami;N. Hoshimiya;Y. Handa
  13. 제 23회 대한의용생체공학회 추계학술발표논문집(CD-ROM) 강축자극에 의해 유발된 근력강화현상의 지속시간 엄광문;나유진;강곤;T. Watanabe;H. Hoshimiya
  14. American J. Physiol v.273 Length-dependent potentiation and myosin light chain phosphorylation in rat gastrocnemius muscle E.R. Dilson;L.A. Tubman;B.R. Maccintosh
  15. J. Structural Biol. v.122 Changes in interfilament spacing mimic the effects of myosin repulatory light chain Phosphorylation in rabbit psoas fibers Z. Yang;J.T. Stull;R.J.C. Levine;H. L. Sweeney
  16. personal communication T. Bajd
  17. personal communication B.O. Kim
  18. Textbook of Medical Physiology A.C. Guyton
  19. Biol. Cybern. v.66 Dual stable point model of muscle activation and deactivation C.P. Chou;B. Hannaford
  20. Biol. chemistry v.38 Dynamic modulation of the regulatory domain of myosin heads by pH. ionic strength, and RLS phosphorylation in synthetic myosin filaments B. B. Adhikari;J. Somerset;T.J. Stull;P.G. Fajer
  21. American J. Physiol. Cell Physiol v.264 Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function H.L. Sweeney;B.F. Browman;J.T. Stull
  22. Am. J. Physiol v.247 Myosin light chain phosphorylation in fast and slow skeletal muscles in situ R.L. Moore;T.J. Stull
  23. Biol. Cybern. v.55 Muscle Models: What is gained and what is lost by varying model complexity J.M. Winters;L. Stark